
Subject: Re: Object-Oriented Programming Question
Posted by Evilio del Rio on Fri, 19 Dec 1997 08:00:00 GMT
View Forum Message <> Reply to Message

On Wed, 17 Dec 1997, Peter Stoltz wrote:

> I define an object structure A that has as one of its data members
> another object B (A has a B). So far as I can tell, when one creates an
> instance of A, one cannot invoke the methods of class B through the
> syntax
>
> IDL> a=obj_new('A')
> IDL> a.b->some_method
>
> % Object instance data is not visible outside class methods
> % Execution halted
>

There are mainly two ways to put toghether two (or more) classes:

A) Composition: One component of a class is an Object.
A 'Leg' is a part of an 'Animal':
	pro Animal__Define
	 tmp = {ANIMAL, ..., LeftFrontLeg : OBJ_NEW(),...}
	 ...
	end
	...
	function Animal::Init
	 ...
	 self.LeftFrontLeg = OBJ_NEW('Leg')
	 ...
	end

B) Inheritance: One class is a special case of another one.
A 'Reptil' is a kind of 'Animal':
	pro Reptil__Define
	 tmp = {Reptil, ..., INHERITS ANIMAL}
	 ...
	end

As a general rule, in OOP the implementation (the components and some
methods) of an object must be hiden from the user(*) of the Object. The user
must only know how to use of what kind of things an object does. This is the
"Need to Know" rule.
For example, to use a class representing Complex numbers you don't need to
know if its internal representation is cartesian (x,y) or polar (r,theta)
or any other convenient way. You just need to know that a complex is

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2411
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=6948&goto=10672#msg_10672
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=10672
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

'something' you can add, multiply, etc..., or calculate its module:

; Use (never changes)
	oZ = OBJ_NEW('Complex')
	...
	r = oZ->Module()

; Polar Implementation (r, th)	 ; Cartesian Implementation (x,y)
function Complex::Module	| function Complex::Module
 return,self.R			| return, SQRT(self.X^2 + self.Y^2)
end				| end

Doing it this way, the code that uses the Complex class is stable against
implementation changes.

In your case, maybe what you need is to define Class A as a Subclass of
Class B, i.e.,

	pro a__define
	 tmp = {A ,...(whatever)..., INHERITS B }
	 return
	end

and then use it as

	a->some_method (equivalent to a->b::some_method)

multiple inheritance is allowed (as far as no conflicting structure
member definitions are found)

	pro a__define
	 tmp = {A ,...(whatever)..., INHERITS B, INHERITS C }
	 return
	end

Hope this helps.
Cheers,

(*) Note: The user of an Object is the rutine(s) that uses this object but
is not a method of the Object class.

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 __ ____
Evilio Jose del Rio Silvan	Institut de Ciencies del Mar
E-mail: edelrio@icm.csic.es	URL: http://www.bodega.org/
"Anywhere you choose,/ Anyway, you're gonna lose"- Mike Oldfield

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

