Subject: Re: Object Blues
Posted by J.D. Smith on Tue, 20 Jan 1998 08:00:00 GMT

View Forum Message <> Reply to Message

mirko_vukovic@notes.mrc.sony.com wrote:

>

> |n article <34BFBBD7.B8EC1D48@astrosun.tn.cornell.edu>,

>

"J.D. Smith" <jdsmith@astrosun.tn.cornell.edu> wrote:

> stuff deleted ...

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

The second complaint is that IDL classes are not permitted to define
public data members. That is, you can't access "someObject.somedata”
anywhere outside that objec'ts own methods. Perhaps RSI saw the
exclusion of this feature as a simplifying decision, and one that
guarantees encapsulation. Indeed, limiting object access to its method
procedures and functions may, at first thought, seem an obvious way to
keep object code well-contained. However, it has other unfortunate
consequences, usually related to the need to acquire a small group of
parameters from an object for extensive and repeated use. The only
solution within the current context is a GetProperty method (which, as
you may recall, is hampered by the non-reference passing of inherited
keywords). This is the solution implemented by IDL's object graphics.

| maintain that an object method (such as most of the GetProperty's)
which simply returns some subset of the member data without any
pre-processing is wasteful and inelegant, and that the true power of
encapsulation is in the ability to select which parts of an object to
encapsulate.

> more stuff deleted ...

>

> id,

>

> the way | work on this is to have a helper object defined, name 'obj'.
> This object has a method GetProperty. If | want to get a property of
> some object, | have it inherit 'obj". These days as a matter of routine
> | have all my non-base objects inherit ‘obj'.

>

> 'OBJ' could be expanded to include a field ‘public’. This would be a
> string array that would specify an objects public members. GetProperty
> would check on that prior to returning the property.

>

> This does not look terribly inconvenient.

This solution is basically the one that RSI uses for its object graphics
routines. Subclassing makes it slightly easier, but you'd still need to
override the GetProperty function (meaning you can't use keyword
inheritance -- which | solved by making a return structure with
increasing number of fields as more properties get added). So,
unfortunately, this is the same solution | am already stuck with. It
requires each class contain a method (whether new or overriding) which

Page 1 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7098&goto=10744#msg_10744
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=10744
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

simply returns member data. While it may not look terribly
inconvenient, it may be terribly inefficient, as shown by the example
code:

*** As a main level routine:

al=obj_new('thisObj')
a2={mem1l:'this is a test',mem2:randomu(sd,2000,2000)}
time=0.
nt=1000
for i=0,nt-1 do begin
tO=systime(1)
; b=a2.meml ;uncomment for case 1
;. b=(al->GetProperty(/MEM1)).MEM1 ;uncomment for case 2
tl=systime(1)
time=time+(t1-t0)
endfor
time=time/(nt)
print,’Average Time: 'time
obj_destroy,al
end

*** |n a file thisobj__define.pro:

function thisObj::GetProperty, MEM1=mem1,MEM2=mem?2
if keyword_set(mem?2) then begin
st=create_struct('memz2',mem?2)
endif
if keyword_set(mem1) then begin
if is_struct(st) then st=create_struct(st,mem1',mem1) else $
st=create_struct('mem1’,;mem1)
endif
if is_struct(st) then return,st
return,-1
end

function thisObj::Init
self. mem1="this is a test'
self. mem2=randomu(sd,2000,2000)
return,l

end

pro thisobj__define

t={thisobj, mem1:",mem2:fltarr(2000,2000,/NOZEROQO)}
end

This first is for the direct structure access, the second by a

Page 2 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

GetProperty method.

CASE 1
IDL> .run timetest
% Compiled module: $SMAINS.
% Compiled module: THISOBJ__ DEFINE.
Average Time: 8.0000043e-05

CASE 2
IDL> .run timetest
% Compiled module: SMAINS.
% Compiled module: IS_STRUCT.
Average Time: 0.0010100002

While these both may look small, the second is ~13 times longer. This
means that calling a GetProperty method in this simple example is 13
times more costly than direct structure dereferencing. Now consider a
much larger example, with more member data, and several superclasses to
which to chain the GetProperty method. Such a real world example might
increase the overhead tremendously, perhaps over 100. Now suppose that
just you needed to access some data member of the "thisObj" class every
time a motion event is generated... all of a sudden you must wait least

10 times as long *just to access a simple variable*. If the value never
changes, of course it is simple (if inelegant) to make a copy of it once

using GetProperty, and store it for use in the event routines, but what

then if the value *is* changing (not to mention the breaking of the
encapsulation philosphy by requiring a local copy be made). As you can
see, this introduces a significant problem, which will only grow in
magnitude with larger, more realistic applications. Note that the way |
made my GetProperty method is not the most efficient (keyword passing
might be faster), but one of the only ways to allow proper subclassing.

| recognize that adding public data members will also increase the
overhead involved in object member dereferencing somewhat, but |
severely doubt it will incur as substantial a penalty as the current
option.

>
> on the other hand, can you expand on your xmanager problem? | recently
> wrote my first widget routine, and promptly dispensed with xmanager using
> widget_event instead. But | am still wondering how foolish | may have

> been.

>

> regards,

>

> mirko vukovic

As far as xmanager, for most ordinary widget applications, it serves its

Page 3 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

purpose quite well. | recommend it to you for most small to mid-sized
projects.

The problem | am addressing is how to create complex interrelationships
among a large group of objects, without becoming overwhelmed by the
guantity of code, and the complexity of the event-handling routine.

As an example, consider a draw widget with an image drawn, which
dispenses several event types (motion, button, etc.). Suppose we requir
a large number of algorithms to access those events to perform a
multitude of actions (draw zoom boxes and zoom in, calculate statistics,
adjust colormaps, etc., etc., etc.). The normal method (using
up-the-tree event passing) would be for the draw widget's event-handler
to catch all of these cases, and pass off the necessary events or event
information to each routine as needed. This requires explicit coding in
the event routine, if any changes are made.

My method allows any number of objects (which subclass from a prototype
inter-object messaging superclass) to sign up for events from a suitably
constructed draw object (constructed, in fact, by subclassing the same
prototype). At runtime, more such objects can be added to the list of
event recipients, their requested events and status can be changed, or
they can be removed from the list entirely. Total flexibility. In

fact, you are free to invent your own "messages" to do whatever you

like, and have them handled in exactly the same fashion as bona-fide
events.

Imagine I've worked two years on my regular event-driven image analysis
tool. Now suppose | want to code a new algorithm that, say, applies a
set of filters to the image in our draw widget. Rather than re-coding

the event-handler for the draw widget, tracing down through all the muck
to find where to explicitly plug in the new routines, and making sure |
don't interfere with the event flow of the many and various other

routines, | can simply subclass from my prototype, request the relevant
events, and concentrate on perfecting the *algorithm*, not the
bookkeeping. Simple.

Now suppose someone else wants to write little object module to work
with my image draw object. | could give them my prototype

specification, and their module would *magically* work with my draw
widget object, without them ever having seen the code which disperses
the events. Imagine 1000 such modules in an online library, each doing
something different. You could download the ones you need, put them
together in a small application (say ~1-2 lines for each object!) and

have a custom made, high-power data analysis tool! Anyway, you get the
point.

It takes a good deal of effort, but objects really do have a payoff.

Page 4 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

JD

J.D. Smith [*I WORK: (607) 255-5842

Cornell University Dept. of Astronomy |*| (607) 255-4083
206 Space Sciences Bldg. |*| FAX: (607) 255-5875
Ithaca, NY 14853 [*|

Page 5 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

