
Subject: Re: Interpolation of missing data
Posted by Martin Schultz on Tue, 20 Jan 1998 08:00:00 GMT
View Forum Message <> Reply to Message

R. Kyle Justice wrote:
>
> I have a 2-D array with missing data. Is there an easy way to
> interpolate the missing values?
>
> I would like to replace a missing value with the average of
> its neighbors.
>
> Kyle J.

This may not be exactly what you want, but you could try to
"re-sample" your data as an array and use the TRI_SURF (or
MIN_CURVE_SURF) function. I have a piece of code that does something
like

 ; create x and y vectors that match with zz array
 goodx = findgen(nx+3)/(nx+2)*(xrange(1)-xrange(0))+xrange(0)
 goody = findgen(ny+3)/(ny+2)*(yrange(1)-yrange(0))+yrange(0)

 ; little trick to get the indices of valid zz's in goodx and goody
 xind = (ind mod (nx+2))
 yind = (ind/(nx+2)) ; integer division !!

 newx = reform(goodx(xind),n_elements(ind))
 newy = reform(goody(yind),n_elements(ind))

 zzz = TRI_SURF(newz,newx,newy,gs=[dx,dy], $
 bounds=[xrange(0),yrange(0),xrange(1),yrange(1)])

(for regular readers: this turned out to be the best solution to my
contour problem that I described earlier - but I must warn of the use
of MIN_CURVE_SURF: it takes *forever* [i.e. I did not want to wait more
than 3 minutes for a data set of ~1000 points and interrupted])

Regards,
Martin

PS: another solution (which would involve a loop [nasty word ;-)])
would be to compute the averages of surrounding grid boxes like

 ind = where(data eq MISSING) ; supply your code for missing data

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7091&goto=10749#msg_10749
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=10749
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 if (ind(0) ge 0) then begin
 for i=0,n_elements(ind)-1 do begin
 x = (i mod (NX+2)) ; get indices in data array
 y = (i/(NX+2)) ; integer division !!
 ; create index array for neighbouring points
 xind = [x-1>(-1), x, x+1<NX, x]
 yind = [y, y-1>(-1), y, y+1<NY]
 ; find out valid neighbours
 ok = where(xind ne MISSING and yind ne MISSING)
 if (ok(0) ge 0) then $
 data(x,y) = total(data(xind(ok),yind(ok))/ $
 float(n_elements(ok))
 endfor
 endif

This would of course only work if at least one neighbour is a valid
data point. In case you are not familiar with the < and > operators:
they are great to limit value ranges, I just recently understood them
and loved them immediately! Please NOTE: I did not test this code,
but it should give you something to start with at least.

 -- -------
Dr. Martin Schultz
Department for Earth&Planetary Sciences, Harvard University
186 Pierce Hall, 29 Oxford St., Cambridge, MA-02138, USA

phone: (617)-496-8318
fax : (617)-495-4551

e-mail: mgs@io.harvard.edu
IDL-homepage: http://www-as.harvard.edu/people/staff/mgs/idl/
 -- -------

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

