Subject: Re: Memory allocation problem:
Posted by Dr. G. Scott Lett on Mon, 23 Feb 1998 08:00:00 GMT

View Forum Message <> Reply to Message

Followup report:
Unfortunately (or not), on all the other unix platforms, the situation is as
David described it, and IDL will exhibit memory hysteresis.

Cheers,
Scott

Dr. G. Scott Lett wrote:

| haven't yet checked this problem on all platforms, but IDL 5.1 beta frees
memory on Linux and Windows. I'll let you know what | find out about
other platforms next week.

Scott

>

>

>

>

> Regards,
>

>

> |~nigo Garcia wrote:

>

>> Well, | was afraid of something like this... | still find it a bug, whatever you
>> say, they should find a way of freeing that memory !!! Can it be done with
>> pointers ?? In a simple way, please, my brain is too small to fight with those
>> beings.

>> I~nigo.

>> David Fanning wrote:

>>> This is a result of IDL being written in C and using the C library

>>> functions (malloc and free) for memory allocation. In most C libraries,
>>> memory that is freed is NOT returned to the operating system. The C
>>> program retains this memory and will reuse it for future calls to malloc
>>> (assuming that the new allocation will fit in the freed block).

>>>

>>> Another way of considering it is in terms of how memory allocation is
>>> done under UNIX. New memory is allocated using brk() or sbrk() which
>>> control the size of the data segment. These routines are called by

>>> malloc().

>>>

>>> Suppose you allocate 3 1 MB regions of memory under C.

>>>

>>> char *pl=(char *)malloc(3*1024*1024);

>>> char *p2=(char *)malloc(3*1024*1024);

>>> char *p3=(char *)malloc(3*1024*1024);

>>>

>>> Here's what your data segment would look like assuming malloc had to call

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2462
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7245&goto=10991#msg_10991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=10991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

segment.

Now we free(pl).

p2 p3 end of
segment

Notice that the free memory is still in the data segment. If free had

called brk to reduce the size of the segment, the 3MB pointed to my p3
would be outside the data segment! SIGSEGV city! If free had moved the
allocated memory to lower addresses so the segment size could be reduced
without losing data, then p2 and p3 would point to invalid addresses, and

we'd be forced to use handles rather than pointers and call

GetPointerFromHandle() every time we wanted to access the memory. Ick!

Just like Windows!
Cheers,

David

Dr. G. Scott Lett
slett@holisticmath.com
http://holisticmath.com/

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

