
Subject: Re: Memory allocation problem:
Posted by Dr. G. Scott Lett on Mon, 23 Feb 1998 08:00:00 GMT
View Forum Message <> Reply to Message

Followup report:
 Unfortunately (or not), on all the other unix platforms, the situation is as
David described it, and IDL will exhibit memory hysteresis.

Cheers,
Scott

Dr. G. Scott Lett wrote:

> I haven't yet checked this problem on all platforms, but IDL 5.1 beta frees
> memory on Linux and Windows. I'll let you know what I find out about
> other platforms next week.
>
> Regards,
> Scott
>
> I~nigo Garcia wrote:
>
>> Well, I was afraid of something like this... I still find it a bug, whatever you
>> say, they should find a way of freeing that memory !!! Can it be done with
>> pointers ?? In a simple way, please, my brain is too small to fight with those
>> beings.
>>
>> I~nigo.
>>
>> David Fanning wrote:
>>> This is a result of IDL being written in C and using the C library
>>> functions (malloc and free) for memory allocation. In most C libraries,
>>> memory that is freed is NOT returned to the operating system. The C
>>> program retains this memory and will reuse it for future calls to malloc
>>> (assuming that the new allocation will fit in the freed block).
>>>
>>> Another way of considering it is in terms of how memory allocation is
>>> done under UNIX. New memory is allocated using brk() or sbrk() which
>>> control the size of the data segment. These routines are called by
>>> malloc().
>>>
>>> Suppose you allocate 3 1 MB regions of memory under C.
>>>
>>> char *p1=(char *)malloc(3*1024*1024);
>>> char *p2=(char *)malloc(3*1024*1024);
>>> char *p3=(char *)malloc(3*1024*1024);
>>>
>>> Here's what your data segment would look like assuming malloc had to call

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2462
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7245&goto=10991#msg_10991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=10991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> sbrk().
>>>
>>> -- ---
>>> prev stuff | overhead | 3MB | overhead | 3MB | overhead | 3MB |
>>> -- ---
>>> ^ ^ ^ ^
>>> p1 p2 p3 end of
>>> segment.
>>>
>>> Now we free(p1).
>>>
>>> -- ----
>>> prev stuff | overhead | free | overhead | 3MB | overhead | 3MB |
>>> -- ----
>>> ^ ^ ^
>>> p2 p3 end of
>>> segment
>>>
>>>
>>> Notice that the free memory is still in the data segment. If free had
>>> called brk to reduce the size of the segment, the 3MB pointed to my p3
>>> would be outside the data segment! SIGSEGV city! If free had moved the
>>> allocated memory to lower addresses so the segment size could be reduced
>>> without losing data, then p2 and p3 would point to invalid addresses, and
>>> we'd be forced to use handles rather than pointers and call
>>> GetPointerFromHandle() every time we wanted to access the memory. Ick!
>>> Just like Windows!
>>>
>>> Cheers,
>>>
>>> David

--
========================
Dr. G. Scott Lett
slett@holisticmath.com
http://holisticmath.com/
========================

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

