
Subject: Re: functions considered as variables
Posted by J.D. Smith on Wed, 11 Mar 1998 08:00:00 GMT
View Forum Message <> Reply to Message

gbust@arlut.utexas.edu wrote:
>
> This might be related to my previous post - I don't know. Anyway, I am
> buzzing away, my driver code calling other routines just fine. I have
> compliled a .pro file that has a bunch of routines in it, and all of a sudden,
> I am stopped in my driver routine at:
> junk = getlatlon(alt_gps)
> with the error notice: variable getlatlon not found.
>
> So I do a help, and sure enough it says getlatlon is a function. So, before
> returning to main, i.e. right where the code stopped, I just type the above
> from the command line - and it works fine. What gives?
>
> Thanks a lot in advance.
>
> -Gary
>
> -----== Posted via Deja News, The Leader in Internet Discussion ==-----
> http://www.dejanews.com/ Now offering spam-free web-based newsreading

I expect you did some .run or .compile statements in between there.
This is indeed an interesting problem. I replicated it with the single
.pro file (name t2.pro), containing:

pro t2
 print,t1(4)
end
function t1,x
 return,x^2
end

I get:

IDL> t2
% Variable is undefined: T1.
% Execution halted at: T2 2
 /u/jdsmith/idl/pro/mylib/test/t2.pro
% T2 2
 /u/jdsmith/idl/pro/mylib/test/t2.pro
% $MAIN$
IDL> help
% At T2 2 /u/jdsmith/idl/pro/mylib/test/t2.pro
% T2 2 /u/jdsmith/idl/pro/mylib/test/t2.pro
% $MAIN$

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7287&goto=11119#msg_11119
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11119
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

T1 UNDEFINED = <Undefined>
Compiled Procedures:
 $MAIN$ CDEF CLOAD MYKEYS2 T2
Compiled Functions:
 FILEPATH

and then,

IDL> retall
IDL> .run t2
% Compiled module: T2.
% Compiled module: T1.
IDL> t2
% Variable is undefined: T1.
% Execution halted at: T2 2
 /u/jdsmith/idl/pro/mylib/test/t2.pro
% $MAIN$
IDL> help
% At T2 2 /u/jdsmith/idl/pro/mylib/test/t2.pro
% $MAIN$
T1 UNDEFINED = <Undefined>
Compiled Procedures:
 $MAIN$ CDEF CLOAD MYKEYS2 T2
Compiled Functions:
 FILEPATH T1

As you can see, T1 is both undefined and a compiled function. The
manual quotes me:
	
To determine if it is compiling an array subscript or a function call,
IDL checks its internal table of known functions. If it finds a function
name that matches the unknown element in the command (fish, in the above
example), it calls that function with the argument specified. If IDL
does not find a function with the correct name in its table of known
functions, it assumes that the unknown element is an array, and attempts
to return the value of the designated element of that array.

which seems not to be the case here.

If I repeat the process, with:

IDL> .run t2
% Compiled module: T2.
% Compiled module: T1.
IDL> t2

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 16

it works. I think this probably has to do with an incorrect bit of
parsing in the IDL compiler... perhaps the function hash table it uses
is not updated at the right time. Quite strange, but perfectly
avoidable.

The real solution to this headache is to put supporting functions in a
.pro file *before* those functions which refer to them, that way they
will always be compiled in time, and you'll never have this problem.
You could also put the function in its own .pro file, since IDL will
always look on the path first (but, apparently, not always at its own
internal table of compiled functions). �IDL's belated introduction of []
for array subscripting will eventually eliminate this problem entirely
(by requiring it's use instead of ()). Imagine the inefficiency of
checking for a function each time a () subscript is made (actually only
when the module is compiled, but recompiling is one of my chief
activities)... yet another reason to adopt [] as your subscripting
mechanism. I hate those wasted cycles.

JD

--
J.D. Smith |*| WORK: (607) 255-5842
Cornell University Dept. of Astronomy |*| (607) 255-4083
206 Space Sciences Bldg. |*| FAX: (607) 255-5875
Ithaca, NY 14853 |*|

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

