
Subject: Memory Mapped files For IDL (UNIX)
Posted by korpela on Tue, 10 Mar 1998 08:00:00 GMT
View Forum Message <> Reply to Message

A little something some of you may be interested in....

 __ _____

 MEMORY MAPPED FILES FOR IDL

 __ _____

 Intro - Specs - Compiling - Usage - Sparse Files - Shared Memeory -
 Bugs - Download
 __ _____

Introduction

 Shortly after beginning to use IDL, I became annoyed with a couple
 features of IDL. First, when working with many large images, I would
 often run out of virtual memory, despite having 127 MB available.
 Second, the ASSOC feature, which associates a file with an IDL array,
 does not work as I had hoped. Rather than easily allowing access to
 any element of any array contained in a file, it requires that
 elements be copied into temporary arrays, and then written back to the
 file array. Eventually I got tired of it both of these problems and
 decided to do something about it. I sat down and wrote _VARRAY_. It
 has the advantages of solving both problems, and a couple I never
 thought of like communication between IDL processes.

VARRAY: Specifications

 VARRAY is in external system routine in IDL. It is written in C and
 has been tested on IDL 4.0.1 under SunOS 4.1.3. It should, however,
 work with minor modifications under most UNIX systems that support the
 mmap() and _ftruncate()_ functions. Making it work under Win32 is
 more of an effort, but should be possible. I have no idea whether
 there is a _mmap()_ equivalent under VMS.

Compiling VARRAY

 VARRAY is shipped with a Makefile that may require some
 modifications depending upon the system used. Macros are provided for
 SunOS systems with GCC and ACC compilers (GCC is recommended) and
 Linux systems. (The code has never been compiled or tested on a Linux
 system. Modifications are likely to be required.) Once the Makefile
 has been modified, _ VARRAY_ is compiled with the command:

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=397
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7361&goto=11186#msg_11186
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11186
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

make varray.so

VARRAY: Usage

 The shared object file "varray.so" needs to be linked into the running
 IDL process using the LINKIMAGE rotine. I place the following command
 in my IDL_STARTUP routine:

 LINKIMAGE,'VARRAY','~/idl/mmap/varray.so',1,'varray',min_arg s=1,max_args=10,
 /keywords

 Once the shared object is loaded, the _VARRAY_ function becomes
 available. The syntax of the _VARRAY_ function is:

 array=VARRAY([filename],element,[dim1,dim2,dim3,...dim8],[/w ritable],[/status])

 where
 * "filename" is the name of the file you wish to associate with the
 array. If the filename is omitted, a writable temporary file with
 a unique name is created in the /tmp directory.

 * "element" is a variable type of each element of the array.
 Currently only numeric scalar types are allowed.

 * "dim1..dim8" are the dimensions of the array. If the file is
 writable and the dimensions are larger than the current file size,
 the file is _ftruncate()_d to the appropriate size.

 * The "/writeable" keyword specified that the file is writeable and
 that the changes to array elements are shared and written to disk.

 * The "/status" keyword causes _VARRAY_ to print the number of open
 files to the standard output. Currently _VARRAY_ supports 32
 simultaneously open files.

 For example, the command

A=VARRAY("test.dat",byte(0),512,512,/writable)

 opens a file named "test.dat", creating it if it doesn't exist, and
 assigns it to a 512 by 512 byte array. The elements of this array can
 be accessed and written to. For example:

A(*,*)=byte(255*randomu(seed,512,512))

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 will write random values into the file. When the variable is deleted
 (i.e DELVAR,A) or reallocated (i.e. A=SOMETHING) all changes will be
 updated on disk.

Sparse Files

 VARRAY supports sparse files. In a sparse file, only those portions
 of the file that contain non-zero data are written to disk. Try the
 following in IDL:

a=fltarr(8192,8192)

 Chances are, you just saw the message (unless you had 256 MB free):

% Unable to allocate memory: to make array.
 Not enough memory
% Execution halted at: $MAIN$

 Now, with _VARRAY_ loaded try the following:

a=varray("test.dat",float(0),8192,8192,/writable)
help,a

 You should see...

A FLOAT = Array(8192, 8192)

 Going to UNIX and doing "ls -l", we see that the file is 268435456
 bytes long and takes up 24k of disk space. Now convince yourself that
 the array is real by doing

a(4096,4096)=!pi
print,a(4096,4096)

 You'd better see 3.14159. Checking the file size again you'll see that
 it's still 268435456 bytes long, but now it takes up 40k of disk
 space. Check that things are repeatable by deleting the variable, and
 reloading it.

delvar,a
a=varray("test.dat",float(0),8192,8192,/writable)
print,a(4096,4096)

 You should still see 3.14159. If you want to sit around for a long
 time you can even "print,total(a)".

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Shared Memory

 A happy circumstance of _VARRAY_ is that it allows memory to be shared
 between IDL processes. If you map a file with the /writable keyword,
 the changes will be shared with any other process that maps the file.
 As an example, start two idl processes and link "varray.so" to them.
 In each, enter:

a=varray("shm.dat",fix(0),100,/writable)

 now, in one enter "a(0)=1" then in the other, enter "print,a(0)."
 Presto, interprocess communication. Of course there's no protection
 for simultaneous access, so for each variable I would recommend that
 one process read and the other write.

Bugs and Stuff-To-Do

 There's always another bug or feature. Here are a few you should note:
 * Arrays that are not mapped as writable use up swap space, as the
 system ensures that enough swap space is available to support
 changes to the array values. Thus, in order to save swap space,
 files must be mapped "/writable."

 * In the above shared memory example, if the array in the reader
 process is not mapped "/writable" and is written to, the array
 looses it's mapping to the file, and the interprocess connection
 disappears.

 * A planned "OFFSET" keyword, which specifies an offset in the file
 for the mapping to begin, has not yet been implemented. Therefore,
 only headerless files are supported for now.

This software is available for download at
http://sag-www.ssl.berkeley.edu/~korpela/mmap/
--
Eric Korpela | An object at rest can never be
korpela@ssl.berkeley.edu | stopped.
Click for home page.

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

