Subject: Re: point inside polygon
Posted by Philippe Peeters on Wed, 01 Apr 1998 08:00:00 GMT

View Forum Message <> Reply to Message

Alex Schuster wrote:

>

> William Connolley wrote:

>

>> |n article C0684CDB@oma.be, Philippe Peeters <philp@oma.be> writes:
>>> Does anybody knows of an IDL function to test whether a given point is

>>> inside a polygon?

>>

>> | needed to solve this recently (in a mapping context). The solution | came up
>> with works but its not elegant: use poly_fill to actually draw your polygon

>> (in a pixmap not the screen window if you prefer), then read off the pixel value
>> of your point to see if its in or out.

>>

>> This is grotesquely inelegant, but its very simple and it works. | can

>> post the code if you're interested. A better solution

>> would be to look at polyfill and see how it does the fill... but sadly

>> polyfill seems to be one of the few routines not written in IDL.

>
> POLYFILLV works similar, but does not need a pixmap. It just returns the
> subscripts of all points inside the polygon.

> This worked okay for me, but for floating point coordinates it might not

> be too accurate.

This is precisely my problem. POLYFILLV is ok to check regular grid
points within a given polygon. In my case | have a polygon with real
coordinates (a satellite pixel) and | want to check if a ground station
(lat,lon) is within the pixel.

| have tried to adapt a C code from Graphic Gems
http://www.acm.org/tog/GraphicsGems/

which is the CrossingMultiply from Haines

in C:

/*

* This version is usually somewhat faster than the original published
in

* Graphics Gems IV; by turning the division for testing the X axis
crossing

* into a tricky multiplication test this part of the test became

faster,

* which had the additional effect of making the test for "both to left

Page 1 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1447
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7471&goto=11503#msg_11503
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11503
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

or

* both to right" a bit slower for triangles than simply computing the

* intersection each time. The main increase is in triangle testing
speed,

* which was about 15% faster; all other polygon complexities were
pretty much

* the same as before. On machines where division is very expensive
(not the

* case on the HP 9000 series on which | tested) this test should be
much

* faster overall than the old code. Your mileage may (in fact, will)
vary,

* depending on the machine and the test data, but in general | believe
this

* code is both shorter and faster. This test was inspired by
unpublished

* Graphics Gems submitted by Joseph Samosky and Mark Haigh-Hutchinson.
* Related work by Samosky is in:

*

* Samosky, Joseph, "SectionView: A system for interactively specifying
and

* visualizing sections through three-dimensional medical image data”,
* M.S. Thesis, Department of Electrical Engineering and Computer
Science,

* Massachusetts Institute of Technology, 1993.

*

*/

[* Shoot a test ray along +X axis. The strategy is to compare vertex Y
values

* to the testing point's Y and quickly discard edges which are entirely

to one

* side of the test ray. Note that CONVEX and WINDING code can be added
as

* for the CrossingsTest() code; it is left out here for clarity.

*

* Input 2D polygon _pgon_ with _numverts_ number of vertices and test
point

* point_, returns 1 if inside, 0O if outside.

*/

int CrossingsMultiplyTest(pgon, numverts, point)

double pgon(][2] ;

int numverts ;

double point[2] ;

{

register int j, yflagO, yflagl, inside_flag ;

register double ty, tx, *vtx0, *vix1 ;

Page 2 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

tx = point[X] ;
ty = point[Y] ;

vtx0 = pgon[numverts-1] ;

[* get test bit for above/below X axis */
yflag0 = (vtxO[Y] >=ty) ;

vix1 = pgon[0] ;

inside_flag=0;
for (j = numverts+1 ; --j ;) {

yflagl = (vtx1[Y] >=ty) ;
/* Check if endpoints straddle (are on opposite sides) of X axis
* (i.e. the Y's differ); if so, +X ray could intersect this edge.
* The old test also checked whether the endpoints are both to the
* right or to the left of the test point. However, given the faster
* intersection point computation used below, this test was found to
* be a break-even proposition for most polygons and a loser for
* triangles (where 50% or more of the edges which survive this test
* will cross quadrants and so have to have the X intersection computed
*anyway). | credit Joseph Samosky with inspiring me to try dropping
* the "both left or both right" part of my code.
*/
if (yflag0 !'=yflagl) {
[* Check intersection of pgon segment with +X ray.
* Note if >= point's X; if so, the ray hits it.
* The division operation is avoided for the ">="test by checking
* the sign of the first vertex wrto the test point; idea inspired
* by Joseph Samosky's and Mark Haigh-Hutchinson's different
* polygon inclusion tests.
*/
if (((vtx1[Y]-ty) * (vtxO[X]-vtx1[X]) >=
(VIX1[X]-tx) * (vixO[Y]-vtx1[Y])) == yflagl) {
inside_flag = linside_flag ;
}
}

/* Move to the next pair of vertices, retaining info as possible. */
yflag0 = yflagl ;

vix0 = vitx1 ;
vixl +=2;
}

return(inside_flag) ;

}

| code itin IDL as

Page 3 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

function ptpoly,pgonx,pgony,x,y

numverts=n_elements(pgonx)

if numverts ne n_elements(pgony) then message,'X & Y must have same
size'

if numverts It 3 then message,'At least 3 vertex'

X=X
ty=y

vixOx = pgonx[numverts-1]

vix0y = pgony[numverts-1]

; get test bit for above/below X axis
yflag0 = (vixOy ge ty) ;

vix1x = pgonx[0]

vix1ly = pgony|[0]

inside_flag =0
for j = 1,numverts-1 do begin

yflagl = (vixly gety) ;
if yflag0 ne yflagl then begin

if (((vtxly-ty) * (vtxOx-vtx1x) ge $
(vtx1x-tx) * (vtxOy-vix1ly)) eq yflagl) then $
inside_flag = not(inside_flag)

endif

yflag0 = yflag1l

vixOx = vtx1x

vixQy = vtx1ly

vix1x = pgonx[j]

vixly = pgony(j]
endfor

return,inside_flag
end

| tried it with a square px=[0,1,1,0] and py=[0,0,1,1] and random points
with 0<x<2 and O<y<2. It works quite well with that polygon but fail if

| rotate the polygon vertices using shift(px,1) and shift(px,2). The
polygon is the same, only the vertices ordering has changed.

But...

Page 4 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Now | have tried Crossing algorithm. this one seems to work. The only
thing is that it can gives a "divide by zero" when two vertices have the
same Y coordinates. In my case of satellite pixels, align vertices are
very improbable.

Philippe Peeters

Belgian Institute for Space Aeronomy Tel: +32-2-373.03.81
Institut d’Aeronomie Spatiale de Belgique Fax: +32-2-374.84.23

3 Avenue Circulaire Email: philp@oma.be

B-1180 Brussels, Belgium http://www.oma.be/BIRA-IASB/

Page 5 of 5 ---- Generated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

