Subject: Re: Global variables and command line
Posted by steinhh on Tue, 21 Apr 1998 07:00:00 GMT

View Forum Message <> Reply to Message

J.D.Smith wrote:

[..snip..]

> At the risk of being too arcane here, | think Daniel's point is quite a

> valid one, and his problem less easily solved than it might at first

> glance seem. Sometimes, one wants to access variables from the $SMAINS$
> level in a routine, and sometimes one wants to put variables created

> inside a routine into $SMAINS$. You might wonder what circumstance could
> exist that would require this functionality. | would simply then direct

> you to RSI's own Insight, in which after getting in you have the option

> of "Select Data to Import"..."IDL Variables"... with a list of SMAIN$

> level variables displayed. Now clearly the folks at RSI have convenient

> access to the names and data locations of the $MAINS level variables,

> and | think they should give us mere ordinary users that access also.

[..snip..]

> | am henceforth considering submitting an enhancement request for a
> function that will provide the names and data locations (e.g. through
> pointers) of SMAINS$ level variables inside routines, and the ability to
> create $MAINS$ level variables from within routines, in a safe form.

[..snip..]

> Perhaps RSI is trying to protect us from ourselves here, realizing that
> with the problems people have with variable locality already, breaking
> it slightly might serve to confuse even more. But they really shouldn't
> underestimate our ability to harness and control whatever new power
> comes our way. And besides, if they get to do it, then so should we.

| agree.

In an attempt to nominate myself for the 'IDL Hacker of the year'
award :-) | dug into something that I'd seen while programming RPC
calls to IDL ... and ended up wasting a days work on this thing that
doesn't seem to work, even though | think it *should* work;

Below is a set of C routines that need to be compiled and linked into
shareable libraries (and remember to include the "libidl" shareable
library in the linking... on my alpha that's done by adding e.g.,
"-L$IDL_DIR/bin/bin.alpha -lidI" to the linker statement). The

easiest way to find the (other) correct compile/link flags is

to modify the $IDL_DIR/external/sharelib/Makefile to include your

Page 1 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7562&goto=11547#msg_11547
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11547
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

file.

The getmain() function is added as a System Routine (very neat - at
least | learned *this* from my little exercise!), but it doesn't
work as expected:

IDL> print, CALL_EXTERNAL('gmain.so’,;/addmain’) ;; Install routine
1
IDL> print,getmain(‘ADF")
% GETMAIN: Couldn't find variable ; As expected
% Execution halted at: $MAIN$
IDL> adf=1
IDL> print,getmain(‘ADF")
Main name ADF, at 140033a58
Main variable type/flag: 2 0
Copying:
Returning: 2 2
1 ; So far, so good...
IDL> r
- pro test
- print,getmain('ADF")
-end
% Compiled module: TEST.
IDL> test
Main name ADF, at 140033c98 ; <- address is wrong, but not NULL!
Main variable type/flag: 0 O
Copying:
Returning: 0 2
% PRINT: Variable is undefined: <UNDEFINED>.
% Execution halted at: TEST 2 /devi/tty
% SMAINS

So, does anyone know what's going wrong here...? Does it behave like
this for all platforms...?

Regards,
Stein Vidar

C source follows (void for non-nerds.. :-)
-- gmain.c
#include <stdio.h>

#include "export.h"

#include <strings.h>

/~k
Initialize with:

print, CALL_EXTERNAL('gmain.so’,'addmain’)

Page 2 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

then, you *should* be able to get the value of a hon-dynamic
main-level variable with:

print,getmain('<VARNAME>")

Alas, this only works from the $MAIN$ scope - which is a bit
silly....

J
#define NULL_VPTR ((IDL_VPTR) NULL)

IDL_VPTR getmain(int argc, IDL_VPTR argVv([])

{
IDL_VPTR main_variable;

IDL_VPTR retv;
IDL_VPTR main_name;

retv = IDL_Gettmp();
main_name = argv[O0];

IDL_ENSURE_STRING(main_name);
IDL_ENSURE_SCALAR(main_name);

main_variable = IDL_GetVarAddr(main_name->value.str.s);

if (main_variable == NULL_VPTR) {
IDL_Message(IDL_M_NAMED_GENERIC,IDL_MSG_LONGJMP,"Couldn't find variable");
}

printf("Main name %s, at %Ix\n\r",main_name->value.str.s,main_variable);
printf("Main variable type/flag: %d %d\n\r",(intymain_variable->type,
(intymain_variable->flags);

if (! (main_variable->flags & IDL_V_DYNAMIC)) {
fprintf(stderr,"Copying: \n\r");
bcopy(main_variable,retv,sizeof(*retv));
retv->flags |= IDL_V_TEMP;

}

fprintf(stderr,"Returning: %d %d\n\r",retv->type,retv->flags);

return retv,

}

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL_SYSFUN_DEF main_def[] = { {{IDL_FUN_RET) getmain, "GETMAIN", 1, 1} };
IDL_LONG addmain(int argc,char *argv[])
{

int tmp;

/* | haven't the faintest idea whether or not this statement is required,
or whether it's completely out of line... */

tmp=IDL_Init(0,&argc,argv);
[* This one was neat, though: */
IDL_AddSystemRoutine(main_def,IDL_TRUE,1); /* Just add getmain... */

return tmp;

Page 4 of 4 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

