
Subject: Re: Ranting and Raving and getting back to global variables
Posted by J.D. Smith on Mon, 20 Apr 1998 07:00:00 GMT
View Forum Message <> Reply to Message

Martin Schultz wrote:
>
> David Fanning (davidf@dfanning.com) wrote in a reply to J.D. Smith
> (jdsmith@astrosun.tn.cornell.edu) who, in another elegant
> and well-reasoned article, this time on main-level variables,
> ends the article by writing this:
>>
> [...]
>>
>>
>> Having spent considerable time afield (and I say this with
>> considerable humility and respect for the efforts of people
>> trying to learn IDL), I believe that more often RSI errs
>> on the side of *overestimating* the user's ability to harness
>> and control the power of IDL.
> True enough: I still remember my first months' struggle trying to
> convince myself that the effort of learning IDL may pay off one day. I
> strongly agree with David's suggestion that the IDL folks should
> make an effort to consolidate the powerful system they provide before it
> may one day become totally incomprehensible (just imagine David would
> retire one day ! ;-)
>
> Coming back to the point of global variables etc.: I still can't fully
> understand the need to create main variables in a subroutine. My
> philosophy (may be a bit antique ?) is that you should know what to
> expect from a subroutine when you are calling it, hence you can pass it
> a parameter which would in your example return the image that you loaded
> and manipulated (if you don't like to restrict yourself to an image, you
> can pass a structure and stuff it with everything you like). So what is
> the point of typing (at a minimum two !) additional characters to a call
> like
>
> my_fancy_widget_routine_that_does_everything_anybody_has_eve r_dreamed_of
>
> (simply add ,a and you can get back to the main level any kind of
> data, images, etc. you like).
>
> E.g in my case; I am very often working with 2D data sets that have an
> additional variable_names array associated with them. So almost all of
> my subroutines can be called as
> routine,data,header
> or sometimes
> routine,data=data,header=header
> and I don't even have to think about this any more when I type it. So

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7564&goto=11558#msg_11558
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11558
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> why should I bother and call
> routine
> bring_to_main_level,data,header
> (or something alike) ?
>
> Should I sign with Joe Farmer now?
> Best regards,
> Martin
>

Allow me to elaborate on the situation which would require a more
flexible mechanism for importing and exporting main level variables.
For applications in which a fixed data structure is being dealt with, as
in the case of your 2D one-at-a-time data sets, it is simple to pass
data between programmatic levels with appropriately crafted arguments.
This mechanism is perfectly adequate in many instances, and I use it
extensively. However, if the data being created or manipulated does not
have some a priori defined structure, size, or organization, the
argument passing paradigm fails. This presumably is the very reason
Insight chooses to do real importing/exporting from the $MAIN$ level: it
is attempting to be a general purpose analysis tool that is not tied to
any one specific format of the data it deals with. As David, I also
don't know the details of how Insight was written, but it is apparently
written in IDL (and is restored from a save file). I am uncertain how
they could achieve this flexibility without special built-in functions
which they're not telling us about.

Of course it is possible by building large cumbersome structures to
achieve some approximation of this flexibility via called arguments, but
this is a markedly less-than-ideal mechanism for user interaction.
Imagine having to distentangle a large, varying-format structure
everytime you wanted to pop back to the command line for some quick
analysis. And another weakness of the argument-based mechanism is its
inability to support the active command line; a widget based program
must exit entirely before its arguments are exported to $MAIN$.

The real issue here is the duality of IDL environment engendered by an
increasingly powerful set of widget-based programming tools. It becomes
realistic to create elaborate and self-contained programs in IDL which
strain the simple partitioned data space format -- a format conceived in
the days when procedural units were much less complex, and most of the
work in IDL was done on the command line. The next step in this
evolution is of course the creation of IDL-based programs which obviate
the command line interface altogether. Such programs are possible to
design currently, but for what I do, I find that a mix of both
interfaces is most efficient.

And as for the philosophical question of greater power vs. consolidation

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

and organization, I see it as a non-issue. I argue that if the
introduction of new features and flexibility makes a program less
accessible, they were not correctly implemented. The common backbone of
all good programs I've encountered is the hierarchical organization of
functionality: a gentle learning curve whose gentleness nonetheless
does not impose arbitrary limits on how high the curve goes. I realize
this is difficult to implement in the real world, but I don't see this
as an excuse. Take as an example the IDL Advanced Development tools for
linking with external programs, and even embedding IDL within a custom
program. These tools are certainly above the heads of most IDL users
(including myself, for the most part), but they are eminently useful and
powerful. Most users, however, can be perfectly productive without
knowing anything about them.

I believe IDL *should* focus on consolidating and cleaning their
interface, but I don't think they should delay or inhibit the
introduction of new features to help achieve this consolidation. As we
all know, the simplest program is the one which does nothing at all.

JD

--
 J.D. Smith |*| WORK: (607) 255-5842
 Cornell University Dept. of Astronomy |*| (607) 255-4083
 206 Space Sciences Bldg. |*| FAX: (607) 255-5875
 Ithaca, NY 14853 |*|

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

