Subject: Re: Global variables and command line
Posted by J.D. Smith on Fri, 17 Apr 1998 07:00:00 GMT

View Forum Message <> Reply to Message

David Fanning wrote:

>

> Daniel SAGE (daniel.sage@epfl.ch) writes:

>

>> | would like use the variables created in the input command line inside
>> the procedures/functions. But in my application where | automatically
>> generate IDL code, | can't use the common mechanism or passing by
>> parameters.

>

>> How is it possible to make V2 visible inside the test procedure when |
>> can't pass the parameters with the run procedure ?

>

> Well, at the risk of being too obvious here, | would suggest

> putting V2 *in* the common block. :-)

>

>> |[DL> common var, v1

to IDL> common var, v1, v2
Cheers,

David

VVVYVYVYVYV

\

David Fanning, Ph.D.

Fanning Software Consulting

E-Mail: davidf@dfanning.com

Phone: 970-221-0438

Coyote's Guide to IDL Programming: http://www.dfanning.com/

V V.V VYV

At the risk of being too arcane here, | think Daniel's point is quite a

valid one, and his problem less easily solved than it might at first

glance seem. Sometimes, one wants to access variables from the SMAIN$
level in a routine, and sometimes one wants to put variables created
inside a routine into $MAIN$. You might wonder what circumstance could
exist that would require this functionality. | would simply then direct

you to RSI's own Insight, in which after getting in you have the option

of "Select Data to Import"..."IDL Variables"... with a list of SMAINS$

level variables displayed. Now clearly the folks at RSI have convenient
access to the names and data locations of the $MAINS level variables,
and | think they should give us mere ordinary users that access also.

As phrased so judiciously in the Reference Guide under the Help
procedure:

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7562&goto=11566#msg_11566
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11566
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

The OUTPUT keyword is primarily for use in capturing HELP
output in order to display it someplace else, such as in a text widget.
This keyword is not intended to be used in obtaining programmatic
information about the IDL session, and is formatted to be human
readable. Research Systems reserves the right to change the format and
content of this text at any time, without warning. If you find yourself
using OUTPUT for a non-display purpose, you should consider submitting
an enhancement request for a function that will provide the information
you require in a safe form.

| am henceforth considering submitting an enhancement request for a
function that will provide the names and data locations (e.g. through
pointers) of SMAINS level variables inside routines, and the ability to
create $SMAINS level variables from within routines, in a safe form.

By the by, for creating $MAIN$ level variables, | used to use this
mechanism:

Have a common block which contains information on new variables
(including their names) created by a program for export into the $SMAINS$
level. Have a $MAIN$ level routine as the only interface into the
program, and have it call that program. After the program exits, the
remainder of the $SMAIN$ level routine simply looks in the common block,
and creates any exported variables in $MAIN$ (or, e.g just creates new
$MAINS level pointers to the heap data). This used to work fine.
However, with the advent of the non-blocking widget interface, it

doesn't work in conjunction with an active command line (the $SMAIN$
level program runs through immediately and exits without creating
anything).

Of course, you can always hack something, so my present solution for
non-blocking applications is to use a little procedure which sets a
pointer into a common block, where it can be retrieved from within the
program.

E.g. | might say
mark, thisPointer

and have the data *thisPointer available immediately in the program.
Indeed, you could take this idea further and have a single $SMAINS level
"import" routine which looks in the relevant common block for any
exported pointers, which have their *names* recorded also in the common
block, and executes them into $MAIN$ with the same names. But this
requires the user to explicitly run the import routine, which not

elegant.

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

As an example, suppose | have some image in afile, call it A. Ina
fancy widget program, | load A from disk and edit that image. When |
exit the program, it would be ideal if A (or a pointer to the heap data
which is A) could be created in the $MAINS$ level (as A) if | so choose,
for my further analysis and editing. Currently, | would have to run my
$MAINS level import routine to accomplish this.

Perhaps RSl is trying to protect us from ourselves here, realizing that
with the problems people have with variable locality already, breaking
it slightly might serve to confuse even more. But they really shouldn't
underestimate our ability to harness and control whatever new power
comes our way. And besides, if they get to do it, then so should we.

Alright, the rant is over.

JD

J.D. Smith [*I WORK: (607) 255-5842
Cornell University Dept. of Astronomy |*| (607) 255-4083
206 Space Sciences Bldg. [*] FAX: (607) 255-5875
Ithaca, NY 14853 [*|

Page 3 of 3 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

