Subject: Re: memory allocation for structure arrays
Posted by Peter Mason on Thu, 30 Apr 1998 07:00:00 GMT

View Forum Message <> Reply to Message

On Wed, 29 Apr 1998, lan Sprod wrote:

| am trying to read a pretty large data file (40Mb) into IDL. The file

is 925,801 records, each 44 bytes long. | can describe the 44 bytes as a
data structure and then replicate this to make a structure array (albeit

a very large one). Then, in theory, reading in the data is a breeze.

>
>
>
>
>
> The problem is that IDL runs out of memory trying to read in the file.

> |t seems that each line of the structure array is somehow requiring MORE
> than 44 bytes of memory. Poking around with top and free shows that it

> seems to be using ~312 bytes for each line instead. At this rate | can

> only read in the first ~225,000 lines of the file.

>

>

>

>

>

>

>

Does anyone know exactly how IDL allocates memory for structures?
Should | be using an associative array to do this?

| am running IDL 5.0.2 on a Linux box with 128Mb of physical RAM and
twice that of swap space.

Are you doing an ASCII (READF) or binary (READU) read? If ASCII then it
might be some sort of buffer problem. Try using OPEN,BUFSIZE=0, ...

(Really assuming a binary read from here on...)

Do you get the error during the READU call? (i.e., Not during the REPLICATE
call?) If so then there's something very odd going on here.

Can you read the first few (say 10) records correctly? If so, then I'd say

that there might be a bug in IDL on Linux.

Type: HELP,my_struc,/STRUC to see how much actual memory is used by each
instance of your struc. (My_struc being either your array or your original

struc def.) Note that this includes IDL's padding bytes, and will most

probably be a little more than 44 bytes (this is OK). If it's a *lot* more

than 44 bytes then you have a problem in your struc def.

If your structure contains no strings then | would have expected the 1/O to
work with READU. With READU and WRITEU, padding bytes are handled
transparently by IDL, and not stored on disk.

If it contains strings then (assuming the file was not generated by IDL) they
will have a fixed amount of space in the original structure. The easiest way
to accomodate this in IDL is to use BYTARRSs of the required size instead of
strings in your structure definition. (You can get the strings later when

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1501
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7582&goto=11583#msg_11583
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11583
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

you need them - STRING(a_bytarr) will find and use any NULL-termination in
a_bytarr.) String structure-members in IDL are dynamically sized and it
is a nightmare to do binary I/O with them.

Do not use ASSOC to try to read the file unless you know that it was written

by an IDL program using ASSOC. | believe that ASSOC with structures does not
have the intelligence of READU/WRITEU - it reads and writes the padding bytes
from/to disk and so is incompatible with READU and WRITEU (and essentially
any external program that does not know exactly how IDL has padded the
structure on your particular platform).

Not very conclusive, but | hope it helped a bit.
Peter Mason

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

