Subject: Re: Important object lesson
Posted by Mark Hadfield on Tue, 30 Jun 1998 07:00:00 GMT

View Forum Message <> Reply to Message

David Fanning wrote in message ...

>> Much deleted

>

> Yes, it must be that when the first object definition is made that

> the two lifecycle methods are "registered"” for the object. Probably

> much the way keywords are registered for procedures and functions

> when they are compiled. If you inadvertently forget to define an INIT

> or CLEANUP method, and you have already made an object of that class,
> then you must exit IDL and start over for those INIT and CLEANUP

> methods to be recognized. This does NOT apply to other methods,

> however, which you can add in the same way you add other procedures
> and functions to programs.

This is my current working hypothesis for how all this works, based on a
little experimentation, a modest amoung of logic, generous conjecture & a
minimal scanning of the documentation...

If IDL encounters
MyClass->MyMethod
the three situations are:

1. IDL finds a MyClass::Method in memory and uses it. (In the normal course
of events the method will have been included in the myclass__define.pro,
before the myclass__define procedure, so it will have been compiled the

first time an instance of the class was created.) If MyClass::MyMethod is
recompiled, the modifications are recognised.

2. Not finding MyClass::Method, IDL searches up the inheritance tree, finds
a ASuperClass::Method in memory and uses it for the remainder of the
session. If MyClass::MyMethod is recompiled, the modifications are not
recognised, because this method is never called. Which is confusing.

3. Failing 1 & 2, IDL searches the !path for myclass__mymethod.pro (and
maybe then for similar files for all superclasses). This can take a while.
For ordinary methods, failure to find it results in an error. Obj_new and
obj_destroy look for an Init and Cleanup respectively, but if they fail to
find them, they just skip that step--until the next time & the next time &
...etc.

> Indeed. | am beginning to wonder if it is not one source
> for the slowness of objects in general, apart from the
> problems of just manipulating this huge 3D space.

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1027
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7895&goto=12150#msg_12150
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12150
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

| don't think objects themselves are all that slow. Objects are just
references to named structures on the heap, which are pretty lightweight
things, much like pointers. You can have a few tens of thousands of the
things before there is any slowdown. Binding of methods to objects is much
like resolving procedures, and not all that slow, except in situations where
methods can't be found, as above.

Object Graphics are slow because they hold so much more information than
graphics windows--when you draw a 10,000-point plot to a Direct Graphics
window you end up with a bunch of pixels; when you add it to a model & a
view & a window, you still have all those points in 3D space.

>> |t also suggests a solution (though not a very elegant one): make all
Zgurobjects subclasses of something, if only a dummy class, and make sure one
2f> the superclasses has explicit Init and Cleanup methods.

>

> | feel certain you are going to try this, Mark. Could you

> fill us in on the result? :-)

Are you suggesting that | am a software fiddler? I'm afraid it's true. | did
think a while back about having a general class called Object with genreally
useful behaviours that all my other classes could descend from, as in Java.
Trouble is, | couldn't think of anything very useful for Object to do and it

still wouldn't be available for IDL built-in classes. Re the present

situation, it's debatable whether my suggestion is more or less trouble than
adding non-functional Inits & Cleanups to all classes.

Mark Hadfield, m.hadfield@niwa.cri.nz http://www.niwa.cri.nz/~hadfield/
National Institute for Water and Atmospheric Research
PO Box 14-901, Wellington, New Zealand

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

