
Subject: Re: IDL/v5 to /v4 converter
Posted by thompson on Wed, 22 Jul 1998 07:00:00 GMT
View Forum Message <> Reply to Message

Earlier, I wrote

> One of the changes introduced in IDL/v5 was to allow the use of square []
> brackets when referencing parts of arrays, instead of the older round ()
> brackets. This change was introduced to unambiguously differentiate between
> arrays and function calls. Many routines now developed for IDL/v5 could also
> be used in IDL/v4 if the square brackets were converted into round brackets.
> Before I write such a beast, I thought I'd ask if anyone already has one.

Wayne Landsman was kind enough to point me to a routine he wrote, which I did
have some success with. However, for various reasons, I ended up writing my
own version anyway. I'd be interested to know if anyone can come up with any
situations which it doesn't handle properly. If anyone has any suggestions for
improvement, I'd also be interested.

Thank you,

William Thompson

 ==
===================
	PRO IDL5TO4, FILENAME, OUTDIR, ECHO=ECHO, ERRMSG=ERRMSG
;+
; Project :	SOHO - CDS
;
; Name :	IDL5TO4
;
; Purpose :	Convert IDL/v5 array[] syntax to IDL/v4 array() syntax.
;
; Category :	Utility
;
; Explanation :	In IDL version 5, square brackets were introduced as an
;		alternate way of referencing an array, to avoid confusion
;		between arrays and functions. In prior versions of IDL, the
;		syntax FRED(3) could be interpreted as either the third element
;		of the array FRED, or as a call to the function FRED. This
;		syntax is still supported in IDL/v5, but the new syntax FRED[3]
;		can be used to show that it is the third element of the array
;		FRED which is desired, and not a function call.
;
;		One of the problems that the new syntax resolves is that of
;		routines where FRED(3) was intended to be used as an array
;		subscripting, and was developed in an environment where there
;		was no FRED function which could cause confusion. If this

Page 1 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=35
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7983&goto=12271#msg_12271
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12271
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;		routine was then moved to an environment where there was a FRED
;		function, then the routine would no longer work correctly.
;		Using FRED[3] solves this problem.
;
;		Unfortunately, the syntax FRED[3] is not supported in earlier
;		versions of IDL. However, it may be that many routines would
;		actually work in the earlier IDLs if the FRED[3] syntax was
;		changed to FRED(3). The routine IDL5TO4 makes this conversion.
;		The modified routine should then work in earlier versions of
;		IDL, assuming that there are no other version-specific aspects
;		to the code.
;
; Syntax :	IDL5TO4, FILENAME [, OUTDIR]
;
; Examples :	IDL5TO4, '*.pro'		;Converts all procedure files
;						;in current directory
;
;		IDL5TO4, '*.pro', 'idlv4'	;Converted files written to
;						;idlv4 subdirectory.
;
; Inputs :	FILENAME = The name of the file(s) to process. May be an array
;			 of filenames, and may also contain wildcard
;			 characters.
;
; Opt. Inputs :	OUTDIR = The name of a directory to write the converted files
;			 to. The directory must aleady exist--the routine will
;			 not try to create it. If not passed, then the files
;			 will be replaced with the converted version at their
;			 present location.
;
; Outputs :	None.
;
; Opt. Outputs:	None.
;
; Keywords :	ECHO = If set, the a message line is printed for every file
;			 processed.
;
;		ERRMSG = If defined and passed, then any error messages will be
;			 returned to the user in this parameter rather than
;			 depending on the MESSAGE routine in IDL. If no errors
;			 are encountered, then a null string is returned. In
;			 order to use this feature, ERRMSG must be defined
;			 first, e.g.
;
;				ERRMSG = ''
;				IDL5TO4, ERRMSG=ERRMSG, ...
;				IF ERRMSG NE '' THEN ...
;

Page 2 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; Calls :	DATATYPE, FIND_FILE, FILE_EXIST, BREAK_FILE, CONCAT_DIR
;
; Common :	None.
;
; Restrictions:	Although most situations should be accounted for, there may
;		still be situations which are not adequately addressed by this
;		routine. One possible failure scenario is when a structure
;		contains a tag name which exactly matches an IDL operator,
;		e.g. "AND", "OR", "MOD", "EQ", etc.
;
;		This routine may not work correctly in Windows or MacOS, if it
;		needs to overwrite a file which already exists. However, it
;		should work okay if the output files are directed to an empty
;		subdirectory.
;
; Side effects:	None.
;
; Prev. Hist. :	Partially based on IDLV5_TO_V4 by Wayne Landsman
;
; History :	Version 1, 22-Jul-1998, William Thompson, GSFC
;
; Contact :	WTHOMPSON
;-
;
;
	ON_ERROR, 2
;
; Check the number of parameters. Make sure that FILENAME and OUTDIR are
; strings, and that OUTDIR is a scalar.
;
	IF N_PARAMS() LT 1 THEN BEGIN
	 MESSAGE = 'Syntax: IDL5TO4, FILENAME [, OUTDIR]'
	 GOTO, HANDLE_ERROR
	ENDIF
;
	IF DATATYPE(FILENAME,1) NE 'String' THEN BEGIN
	 MESSAGE = 'FILENAME must be a string'
	 GOTO, HANDLE_ERROR
	ENDIF
;
	IF N_ELEMENTS(OUTDIR) GE 1 THEN BEGIN
	 IF DATATYPE(OUTDIR,1) NE 'String' THEN BEGIN
		MESSAGE = 'OUTDIR must be a string'
		GOTO, HANDLE_ERROR
	 ENDIF
;
	 IF N_ELEMENTS(OUTDIR) GT 1 THEN BEGIN
		MESSAGE = 'OUTDIR must be a scalar'

Page 3 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

		GOTO, HANDLE_ERROR
	 ENDIF
	ENDIF
;
; If FILENAME is an array, then call this routine for each element.
;
	IF N_ELEMENTS(FILENAME) GT 1 THEN BEGIN
	 FOR I=0,N_ELEMENTS(FILENAME)-1 DO BEGIN
		MESSAGE = ''
		IDL5TO4, FILENAME(I), OUTDIR, ECHO=ECHO, ERRMSG=MESSAGE
		IF MESSAGE NE '' THEN GOTO, HANDLE_ERROR
	 ENDFOR
	 RETURN
	ENDIF
;
; If FILENAME contains a wildcard character, then expand the wildcards, and
; call this routine for each filename derived.
;
	FILES = FIND_FILE(FILENAME)
	IF N_ELEMENTS(FILES) GT 1 THEN BEGIN
	 FOR I=0,N_ELEMENTS(FILES)-1 DO BEGIN
		MESSAGE = ''
		IDL5TO4, FILES(I), OUTDIR, ECHO=ECHO, ERRMSG=MESSAGE
		IF MESSAGE NE '' THEN GOTO, HANDLE_ERROR
	 ENDFOR
	 RETURN
	ENDIF
;
; Determine the byte equivalences of various characters to be used in the
; program.
;
	TAB = 9B
	BLANK = (BYTE(' '))(0)
	SQUOTE = (BYTE("'"))(0)
	DQUOTE = (BYTE('"'))(0)
	ZERO = (BYTE('0'))(0)
	NINE = (BYTE('9'))(0)
	DOLLAR = (BYTE('$'))(0)
	SLEFT = (BYTE('['))(0)
	RLEFT = (BYTE('('))(0)
	SRIGHT = (BYTE(']'))(0)
	RRIGHT = (BYTE(')'))(0)
	CHARA = (BYTE('A'))(0)
	CHARZ = (BYTE('Z'))(0)
	PLUS = (BYTE('+'))(0)
	ATSIGN = (BYTE('@'))(0)
	PERIOD = (BYTE('.'))(0)
	SEMICOLON = (BYTE(';'))(0)

Page 4 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

	UNDERSCORE = (BYTE('_'))(0)
;
; Determine the commands for moving, depending on the operating system.
;
	CASE OS_FAMILY() OF
	 'vms': BEGIN
		RENAME = 'RENAME'
		CURDIR = '[]'
		END
	 ELSE: BEGIN
		RENAME = 'mv'
		CURDIR = '.'
		END
	ENDCASE
;
; Check the input filename. If OUTDIR was passed, then
;
	IF NOT FILE_EXIST(FILENAME) THEN BEGIN
	 MESSAGE = 'Input file "' + FILENAME + '" does not exist'
	 GOTO, HANDLE_ERROR
	ENDIF
;
; Determine the name of the input file, and the ultimate output file. If the
; output file already exists, then write to a temporary file.
;
	TEMPFILE = 'TEMPORARY.TEMPORARY'
	IF N_ELEMENTS(OUTDIR) EQ 0 THEN OUTFILE = FILENAME ELSE BEGIN
	 TEMPFILE = CONCAT_DIR(OUTDIR, TEMPFILE)
	 BREAK_FILE, FILENAME, DISK, DIR, NAME, EXT
	 OUTFILE = CONCAT_DIR(OUTDIR, NAME+EXT)
	 IF NOT FILE_EXIST(OUTFILE) THEN TEMPFILE = OUTFILE
	ENDELSE
;
; Open up the input file and the temporary output file.
;
	MESSAGE = 'Unable to open input file "' + FILENAME + '"'
	ON_IOERROR, HANDLE_ERROR
	OPENR, IN, FILENAME, /GET_LUN
	IF KEYWORD_SET(ECHO) THEN PRINT, 'Processing file ' + FILENAME
;
	MESSAGE = 'Unable to open output file "' + TEMPFILE + '"'
	ON_IOERROR, HANDLE_ERROR
	OPENW, OUT, TEMPFILE, /GET_LUN
;
	MESSAGE = 'Read/write error encountered'
	ON_IOERROR, HANDLE_ERROR
;
; Step through all the lines in the file.

Page 5 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;
	WHILE NOT EOF(IN) DO BEGIN
	 N_LINES = 0
	 LASTCHAR = DOLLAR
	 TEMP = ''
	 WHILE (NOT EOF(IN)) AND ((LASTCHAR EQ DOLLAR) OR	$
		 (STRLEN(TEMP) EQ 0)) DO BEGIN
		READF, IN, TEMP
;
; Convert the line to uppercase, and then to a byte array.
;
		BTEMP = BYTE(STRUPCASE(TEMP))
;
; Convert all tabs to blanks.
;
		W = WHERE(BTEMP EQ TAB, COUNT)
		IF COUNT GT 0 THEN BTEMP(W) = BLANK
;
; Ignore all strings delimited by single quotes.
;
		W = [WHERE(BTEMP EQ SQUOTE, COUNT), STRLEN(TEMP)-1]
		FOR I = 0, COUNT-1, 2 DO BEGIN
		 I1 = W(I) + 1
		 I2 = W(I+1) - 1
		 IF I1 LE I2 THEN BTEMP(I1:I2) = BLANK
		ENDFOR
;
; Ignore all strings delimited by double quotes. However, first check to see
; if the character immediately following the first quote is a numeral. If it
; is, then it's an octal constant instead.
;
		W = [WHERE(BTEMP EQ DQUOTE, COUNT), STRLEN(TEMP)-1]
		FOR I = 0, COUNT-1, 2 DO BEGIN
		 TEST = BTEMP(W(I)+1)
		 IF (TEST GE ZERO) AND (TEST LE NINE) THEN I=I-1 ELSE BEGIN
			I1 = W(I) + 1
			I2 = W(I+1) - 1
			IF I1 LE I2 THEN BTEMP(I1:I2) = BLANK
		 ENDELSE
		ENDFOR
;
; Ignore any characters after (and including) the comment character.
;
		W = WHERE(BTEMP EQ SEMICOLON, COUNT)
		IF (W(0) LT N_ELEMENTS(BTEMP)) AND (COUNT GT 0) THEN	$
			BTEMP(W(0):*) = BLANK
;
; Find out if the last character is a continuation character. If it is, then

Page 6 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; remove it from the byte array.
;
		W = WHERE(BTEMP NE BLANK, COUNT)
		IF COUNT GT 0 THEN LASTCHAR = BTEMP(W(COUNT-1)) ELSE	$
			LASTCHAR = BLANK
		IF LASTCHAR EQ DOLLAR THEN BTEMP(W(COUNT-1)) = BLANK
;
; Store the line in the concatenated LINE and BLINE arrays.
;
		IF N_LINES EQ 0 THEN BEGIN
		 LINE = TEMP
		 BLINE = BTEMP
		 N_CHAR = STRLEN(TEMP)
		END ELSE BEGIN
		 LINE = LINE + TEMP
		 BLINE = [BLINE, BTEMP]
		 N_CHAR = [N_CHAR, STRLEN(TEMP)]
		ENDELSE
		N_LINES = N_LINES + 1
	 ENDWHILE
;
; Make sure that any null characters, introduced by zero-length lines, are
; removed from the byte array.
;
	 W = WHERE(BLINE NE 0B, COUNT)
	 IF COUNT GT 0 THEN BLINE = BLINE(W)
;
; If the first character in the line is an @ sign, or a period, then the line
; is an IDL directive, and shouldn't be changed.
;
	 IF (BLINE(0) EQ ATSIGN) THEN GOTO, WRITE_LINE
	 W = WHERE(BLINE NE BLANK, COUNT)
	 IF COUNT GT 0 THEN IF BLINE(W(0)) EQ PERIOD THEN GOTO, WRITE_LINE
;
; Remove all words that are actually IDL operators.
;
	 OPS = ['EQ','NE','LE','LT','GE','GT','AND','OR','XOR','MOD']
	 OPS = ' ' + OPS + ' '
	 BTEMP = BLINE
	 W = WHERE(((BLINE LT CHARA) OR (BLINE GT CHARZ)) AND	$
		 ((BLINE LT ZERO) OR (BLINE GT NINE)) AND	$
		 (BLINE NE UNDERSCORE), COUNT)
	 IF COUNT GT 0 THEN BTEMP(W) = BLANK
	 TEMP = ' ' + STRING(BTEMP) + ' '
	 FOR I = 0,N_ELEMENTS(OPS)-1 DO BEGIN
	 W = -1
		REPEAT BEGIN
		 W = STRPOS(TEMP,OPS(I),W+1)

Page 7 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

		 IF W GE 0 THEN FOR J=0,STRLEN(OPS(I))-3 DO	$
			 BLINE(W+J) = PLUS
		ENDREP UNTIL W LT 0
	 ENDFOR
;
; Find all [] pairs. Work from the innermost outward.
;
	 REPEAT BEGIN
		WRIGHT = WHERE(BLINE EQ SRIGHT, RCOUNT)
		IF RCOUNT GT 0 THEN BEGIN
		 WRIGHT = WRIGHT(0)
		 BLINE(WRIGHT) = RRIGHT
		 WLEFT = WHERE(BLINE(0:WRIGHT(0)) EQ SLEFT, LCOUNT)
		 IF LCOUNT GT 0 THEN BEGIN
			WLEFT = WLEFT(LCOUNT-1)
			BLINE(WLEFT) = RLEFT
;
; Find the first nonblank character to the left of the left bracket. If it's
; alphanumeric, an underscore, or the round right bracket, then change the
; brackets from square to round.
;
			I = WLEFT - 1
			WHILE (I GT 0) AND (BLINE(I) EQ BLANK) DO I = I - 1
			IF ((BLINE(I) GE CHARA) AND (BLINE(I) LE CHARZ)) OR $
				((BLINE(I) GE ZERO) AND (BLINE(I) LE NINE)) $
				OR (BLINE(I) EQ RRIGHT) OR	$
				(BLINE(I) EQ UNDERSCORE) THEN BEGIN
			 STRPUT, LINE, '(', WLEFT
			 STRPUT, LINE, ')', WRIGHT
			ENDIF
		 ENDIF
		ENDIF
	 ENDREP UNTIL RCOUNT EQ 0
;
; Write the modified line to the output file.
;
WRITE_LINE:
	 FOR I = 0,N_LINES-1 DO BEGIN
		PRINTF, OUT, STRMID(LINE,0,N_CHAR(I))
		IF N_CHAR(I) LT STRLEN(LINE) THEN LINE =	$
			STRMID(LINE,N_CHAR(I),STRLEN(LINE)-N_CHAR(I))
	 ENDFOR
	ENDWHILE
;
; Close the input and output files. If necessary, then rename the temporary
; file to the final filename.
;
	FREE_LUN, IN, OUT

Page 8 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

	IF TEMPFILE NE OUTFILE THEN SPAWN,	$
		RENAME + ' ' + TEMPFILE + ' ' + OUTFILE
;
; If the ERRMSG keyword was passed, then set it to the null string to signal
; success.
;
	IF N_ELEMENTS(ERRMSG) NE 0 THEN ERRMSG = ''
	RETURN
;
; Error handling point.
;
HANDLE_ERROR:
	IF N_ELEMENTS(ERRMSG) NE 0 THEN ERRMSG = 'IDL5TO4: ' + MESSAGE $
		ELSE MESSAGE, MESSAGE
	END

Page 9 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

