
Subject: Re: writing a structure with pointers
Posted by Martin Schultz on Thu, 16 Jul 1998 07:00:00 GMT
View Forum Message <> Reply to Message

David Fanning wrote:
>
> Lisa Bryan (lbryan@arete-az.com) writes:
>
>> Could someone tell me the easiest way to do the following.
>>
>> state = {.....big long huge structure with many substructures and lots
>>
>> of pointers all over the place....}
>> writeu,unit,state
>>
>> I'm trying to write my state structure into an unformatted file and
>> get the error:
>>
>> WRITEU: Expression containing pointers not allowed in this context:
>> STATE.
>
> Oh, oh. Looks like someone will have to write a recursive
> procedure to example the fields of structures and dereference
> the pointer fields. It is a shame there isn't a DEREFERENCE
> keyword that could be used with the WRITEU command.
>
Hi Lisa, David,

 David, didn't you yourself have this recursive program that extracts
all structure tags on your webpage? I think, this could be a good
starting point for a general routine to write structures with pointers
and structures with pointers ...

 But first, let's step back a little: I don't think there is an easy
"generic" solution to this problem, because a pointer is only a long
word, and you don't "know" the size of the stuff it points to off-hand.
Hence, you can't simply de-reference all pointers and store the "real"
data into a file, because you won't be able to read it again. So you
actually have to come up with a proprietary file format that contains
the tag names *and* the data/pointers you want to store (which is
somewhat similar to what SAVE will do, except that you can have more
control over it).

 Now here is what I would do:
Start your file with some unique file type identifier (just a string of
fixed length, e.g. BYTE('binary IDL structure file'), which makes it
easier to analyze the file if you forgot what it is, and you try a more,
vi, edit, etc.) Then write out the structure tagnames [fixed string

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7988&goto=12366#msg_12366
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12366
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

length, i.e. BYTE() !(*)] recursively, thereby adding a type and size
information (e.g. just print out the size array, although it would be
easier to handle for input if you had a fixed length type information
field, e.g. type [note that structures have 8, pointers have 10 when you
adopt the "size" types], dim1, dim2, dim3,dim4 [should all be LONG !!]).
Finally take a second recursive turn through the structure and write out
all values, de-referencing your pointers on the fly.

(*) In a way that is going "back" to e.g. FORTRAN, where you have to
deal with fixed string lengths, but the advantage is that you know the
size of your "header", which makes it much easier to read. What I do to
get a fixed length string is:
 flstring = ([byte(str), replicate(32B,MAXLEN)])[0:MAXLEN-1]

 When you read a structure back in, you may want to check out my
CHKSTRU function (attached below), which allows you to test (a) whether
a variable is a structure, and (b) whether it contains the tags that you
need {does not operate recursively though}.

 Hope, this helps a little,
Martin.

 -- -------
Dr. Martin Schultz
Department for Earth&Planetary Sciences, Harvard University
109 Pierce Hall, 29 Oxford St., Cambridge, MA-02138, USA

phone: (617)-496-8318
fax : (617)-495-4551

e-mail: mgs@io.harvard.edu
Internet-homepage: http://www-as.harvard.edu/people/staff/mgs/
 -- -------

 ;--- --
;+
; NAME:
; CHKSTRU (function)
;
; PURPOSE:
; check validity of a structure and test if necessary
; fields are contained
;
; CATEGORY:
; tools
;
; CALLING SEQUENCE:

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; res=CHKSTRU(STRUCTURE,FIELDS [,/VERBOSE])
;
; INPUTS:
; STRUCTURE --> the structure to be tested. If STRUCTURE is
; not of type structure, the function will return 0
;
; FIELDS --> a string or string array with field names to
; be contained in STRUCTURE. CHKSTRU returns 1 (true)
; only if all field names are contained in STRUCTURE.
; The entries of FIELDS may be upper or lowercase.
;
; KEYWORD PARAMETERS:
; INDEX --> a named variable that will contain the indices of
; the required field names in the structure. They can then
; be assessed through structure.(index(i)) . Index will
; contain -1 for all fields entries that are not in the
; structure.
;
; /VERBOSE --> set this keyword to return an error message
; in case of an error.
;
; OUTPUTS:
; CHKSTRU returns 1 if successful, otherwise 0.
;
; SUBROUTINES:
;
; REQUIREMENTS:
;
; NOTES:
;
; EXAMPLE:
; test = { a:1, b:2, c:3 }
; required = ['a','c']
; if CHKSTRU(test,required) then print,'found a and c.'
;
; MODIFICATION HISTORY:
; mgs, 02 Mar 1998: VERSION 1.00
; mgs, 07 Apr 1998: - second parameter (FIELDS) now optional
;
;-
; Copyright (C) 1998, Martin Schultz, Harvard University
; This software is provided as is without any warranty
; whatsoever. It may be freely used, copied or distributed
; for non-commercial purposes. This copyright notice must be
; kept with any copy of this software. If this software shall
; be used commercially or sold as part of a larger package,
; please contact the author to arrange payment.
; Bugs and comments should be directed to mgs@io.harvard.edu

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; with subject "IDL routine chkstru"
 ;--- --

function chkstru,structure,fields,index=index,verbose=verbose

 ; default index
 index = -1

 ; first check number of parameters (must be at least 1)
 if (n_params() lt 1) then begin
 if(keyword_set(verbose)) then $
 print,'CHKSTRU: ** invalid number of parameters ! **'
 return,0
 endif

 ; check if the user really passed a structure

 s = size(structure)
 if (s(1+s(0)) ne 8) then begin
 if(keyword_set(verbose)) then $
 print,'CHKSTRU: ** No structure passed ! **'
 return,0
 endif

 ; only one parameter: then we are finished
 if (n_params() eq 1) then return,1

 ; see if required field names are contained in the structure
 ; and return indices of these fields

 names = tag_names(structure)
 index = intarr(n_elements(fields)) - 1 ; default index to 'not found'

 for i=0,n_elements(fields)-1 do begin
 ind = where(names eq strupcase(fields(i)))
 if (ind(0) lt 0) then begin
 if(keyword_set(verbose)) then $
 print,'CHKSTRU: ** Cannot find field '+fields(i)+' ! **'
 endif else index(i) = ind(0)
 endfor

 ; check minimum value of index field: -1 indicates error

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 return,(min(index) ge 0)

end

File Attachments
1) chkstru.pro, downloaded 77 times

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=getfile&id=34
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

