Subject: Re: widgets and objects
Posted by mirko_vukovic on Fri, 14 Aug 1998 07:00:00 GMT

View Forum Message <> Reply to Message

In article <35D32FC5.568C67E5@astro.uni-bonn.de>,
Reinhold Schaaf <schaaf@astro.uni-bonn.de> wrote:

| (Mirko Vukovic) recieved the following e-mail from Reinhold with the
request to post it as he had trouble reaching his news-server. | see
his message on the group, but in an intelligable font. Thus, | am
reposting his email to me.

And now, heeere's REINHOLD!

| worked quite a bit in this sort of programming and came up with the
following scheme, which

was initialized by a remark of Mark Rivers from the University of
Chicago:

The first part of the scheme is to put a reference of the object into

the widget's UVALUE. The

following part of the implementation of the class CWidget (which is used
as an abstract base

class for all sorts of other widget classes) shows how this can be done
during initialization.

Whenever the widget is needed, the method CWidget::GetBase returns it,
also for all classes

derived from CWidget (unless you override GetBase, what you should'nt).

PRO CWidget__Define
struct = { CWidget, $
wBase:0L, $
oFrame:OBJ_NEW() $; The object of class CFrame that
holds the TLBase

}
END

FUNCTION CWidget::Init, oParent, $; either CWidget or
CFrame object
FRAME=bFrame, $; set for frame
around widget
XOFFSET=fXOffset, $; in pixels relative
to parent

Page 1 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2450
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=6742&goto=12480#msg_12480
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12480
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

XSIZE=fXSize, $; in pixels

YOFFSET=fYOffset, $; in pixels relative
to parent

YSIZE=fYSize ; in pixels

:some checks deleted

wParent = oParent->GetBase()

self.wBase = WIDGET_BASE(wParent, $
FRAME=bFrame, $
XOFFSET=fXOffset, $
XSIZE=fXSize, $
YOFFSET=fYOffset, $
YSIZE=fYSize)

WIDGET_CONTROL, self.wBase, SET_UVALUE=self

self.oFrame = oParent->GetFrame() ; <=1t

happens here
RETURN, 1
END

FUNCTION CWidget::GetBase
RETURN, self.wBase
END

The second part is event handling: This is all done in a central
event-handling routine, named

CFrame_Event, which must be declared as the event handler in all
XMANAGER calls. This is of

course a global function, but its only purpose is to distribute the
events to member functions

of CFrame:

PRO CFrame_Event, sEvent

stEventName = TAG_NAMES(sEvent, /STRUCTURE_NAME)
oFrame = CFrame_GetFrame(sEvent.top)

bEventHandled = 0B
CASE stEventName OF

; Events from base widgets
'WIDGET_BASE" $
BEGIN
bEventHandled = oFrame->OnResize(sEvent.id, sEvent.x,
sEvent.y)

Page 2 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

oFrame->OnUpdate
END
'‘WIDGET_KBRD_FOCUS": $
CASE sEvent.enter OF
0: bEventHandled = oFrame->0OnLooseKbrdFocus(sEvent.id)
1: bEventHandled = oFrame->OnGainKbrdFocus(sEvent.id)
ELSE:
ENDCASE
'WIDGET_KILL_REQUEST" $
bEventHandled = oFrame->OnKillRequest(sEvent.id)

;Events from button widgets
'WIDGET _BUTTON": $
CASE sEvent.select OF
; The frame handles all events, could be solved differently

0: bEventHandled = oFrame->OnButtonRelease(sEvent.id)
1: bEventHandled = oFrame->OnButtonPress(sEvent.id)
ELSE:

ENDCASE

etc etc

The class CFrame, which is used as an abstract base class for other
classes, which implement
concrete frames, provides only non-functional event-handlers:

FUNCTION CFrame::OnResize, wiD, iX, iY
RETURN, OB

END

FUNCTION CFrame::OnButtonPress, wiD
bEventHandled = 0B

END

etc.

The real work is done in the OnResize function of the concrete frame:

FUNCTION CMainFrame::OnResize, wiD, iX, iY
:the work is done here:

IXSizeReq = LONG(iX - self.oDraw->GetXOffset() - self->GetXPad())

Page 3 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

lYSizeReq = LONG(iY - self.oDraw->GetYOffset() - self->GetYPad())

IXSize = self.IXSizeMin > IXSizeReq
lYSize = self.lYSizeMin > [YSizeReq

self.oDraw->SetXSize, IXSize
self.oDraw->SetYSize, IYSize

RETURN, 1B
END

FUNCTION CMainFrame::OnButtonPress, wiD

WIDGET_CONTROL, wiD, GET_UVALUE=stButtID ; the ID of the button
pressed
CASE stButtID OF
'wButtSetMen': $
BEGIN
IF NOT self->bModelsSet() THEN BEGIN
oData = self->GetData()

etc.

This scheme has the advantage that all routine work with event handling
is concentrated in the

Class CFrame. If one implements a concrete frame class, one has only to
provide the functions

CMyFrame::OnResize etc with the functionality, which is needed for this
concrete class. One

can forget all the trouble in CFrame, once it is implemented prooperly!

| hope that my answer gives you some idea how one could procede. | have
developed with this

(and some other) concepts the first stage of a quite complex user
interface. But still a lot

of work (e.g. with positioning of widgets) has to be invested into this
framework. And so (sad

enough, but that's life), since IDL 5.1 supports ActiveX, | will almost
certainly abbandon

widget-object programming in IDL and switch to VC++ + IDL as ActiveX
server.

Best regards

Page 4 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Reinhold

kkkkkkkkkkkkkkkkkkkkkkhhhkhkhkkkkkkkkhkhhkhkhkhkkhkkkkkkkkhhkhkhkhkhkkkkx %

Reinhold Schaaf
Ettighofferstr. 22
53123 Bonn
Germany

Tel.: (49)-228-625713
Email: schaaf@astro.uni-bonn.de

kkkkkkkkkkkkkkkkkkkkkhkkkhkkkhkkkhkhkkkkkkkkkhkkhkkkhkkkhkkkkkkkkkkhkkhkkhkkkkk *

http://www.dejanews.com/rg_mkgrp.xp Create Your Own Free Member Forum

Page 5 of 5 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

