
Subject: Re: widgets and objects
Posted by mirko_vukovic on Fri, 14 Aug 1998 07:00:00 GMT
View Forum Message <> Reply to Message

In article <35D32FC5.568C67E5@astro.uni-bonn.de>,
 Reinhold Schaaf <schaaf@astro.uni-bonn.de> wrote:

!!!!!NOTE

I (Mirko Vukovic) recieved the following e-mail from Reinhold with the
request to post it as he had trouble reaching his news-server. I see
his message on the group, but in an intelligable font. Thus, I am
reposting his email to me.

And now, heeere's REINHOLD!!

I worked quite a bit in this sort of programming and came up with the
following scheme, which
was initialized by a remark of Mark Rivers from the University of
Chicago:

The first part of the scheme is to put a reference of the object into
the widget's UVALUE. The
following part of the implementation of the class CWidget (which is used
as an abstract base
class for all sorts of other widget classes) shows how this can be done
during initialization.
Whenever the widget is needed, the method CWidget::GetBase returns it,
also for all classes
derived from CWidget (unless you override GetBase, what you should'nt).

 PRO CWidget__Define
 struct = { CWidget, $
 wBase:0L, $
 oFrame:OBJ_NEW() $; The object of class CFrame that
holds the TLBase
 }
 END

 FUNCTION CWidget::Init, oParent, $; either CWidget or
CFrame object
 FRAME=bFrame, $; set for frame
around widget
 XOFFSET=fXOffset, $; in pixels relative
to parent

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2450
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=6742&goto=12480#msg_12480
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12480
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 XSIZE=fXSize, $; in pixels
 YOFFSET=fYOffset, $; in pixels relative
to parent
 YSIZE=fYSize ; in pixels

 ;some checks deleted

 wParent = oParent->GetBase()
 self.wBase = WIDGET_BASE(wParent, $
 FRAME=bFrame, $
 XOFFSET=fXOffset, $
 XSIZE=fXSize, $
 YOFFSET=fYOffset, $
 YSIZE=fYSize)
 WIDGET_CONTROL, self.wBase, SET_UVALUE=self
 self.oFrame = oParent->GetFrame() ; <= it
happens here
 RETURN, 1
 END

 FUNCTION CWidget::GetBase
 RETURN, self.wBase
 END

The second part is event handling: This is all done in a central
event-handling routine, named
CFrame_Event, which must be declared as the event handler in all
XMANAGER calls. This is of
course a global function, but its only purpose is to distribute the
events to member functions
of CFrame:

 PRO CFrame_Event, sEvent

 stEventName = TAG_NAMES(sEvent, /STRUCTURE_NAME)
 oFrame = CFrame_GetFrame(sEvent.top)

 bEventHandled = 0B

 CASE stEventName OF

 ; Events from base widgets
 'WIDGET_BASE': $
 BEGIN
 bEventHandled = oFrame->OnResize(sEvent.id, sEvent.x,
sEvent.y)

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 oFrame->OnUpdate
 END
 'WIDGET_KBRD_FOCUS': $
 CASE sEvent.enter OF
 0: bEventHandled = oFrame->OnLooseKbrdFocus(sEvent.id)
 1: bEventHandled = oFrame->OnGainKbrdFocus(sEvent.id)
 ELSE:
 ENDCASE
 'WIDGET_KILL_REQUEST': $
 bEventHandled = oFrame->OnKillRequest(sEvent.id)

 ;Events from button widgets
 'WIDGET_BUTTON': $
 CASE sEvent.select OF
 ; The frame handles all events, could be solved differently

 0: bEventHandled = oFrame->OnButtonRelease(sEvent.id)
 1: bEventHandled = oFrame->OnButtonPress(sEvent.id)
 ELSE:
 ENDCASE

 etc etc

The class CFrame, which is used as an abstract base class for other
classes, which implement
concrete frames, provides only non-functional event-handlers:

 FUNCTION CFrame::OnResize, wID, iX, iY
 RETURN, 0B
 END

 FUNCTION CFrame::OnButtonPress, wID
 bEventHandled = 0B
 END

 etc.

The real work is done in the OnResize function of the concrete frame:

 FUNCTION CMainFrame::OnResize, wID, iX, iY

 ;the work is done here:

 lXSizeReq = LONG(iX - self.oDraw->GetXOffset() - self->GetXPad())

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 lYSizeReq = LONG(iY - self.oDraw->GetYOffset() - self->GetYPad())

 lXSize = self.lXSizeMin > lXSizeReq
 lYSize = self.lYSizeMin > lYSizeReq

 self.oDraw->SetXSize, lXSize
 self.oDraw->SetYSize, lYSize

 RETURN, 1B
 END

 FUNCTION CMainFrame::OnButtonPress, wID

 WIDGET_CONTROL, wID, GET_UVALUE=stButtID ; the ID of the button
pressed
 CASE stButtID OF
 'wButtSetMen': $
 BEGIN
 IF NOT self->bModeIsSet() THEN BEGIN
 oData = self->GetData()

 etc.

This scheme has the advantage that all routine work with event handling
is concentrated in the
Class CFrame. If one implements a concrete frame class, one has only to
provide the functions
CMyFrame::OnResize etc with the functionality, which is needed for this
concrete class. One
can forget all the trouble in CFrame, once it is implemented prooperly!

I hope that my answer gives you some idea how one could procede. I have
developed with this
(and some other) concepts the first stage of a quite complex user
interface. But still a lot
of work (e.g. with positioning of widgets) has to be invested into this
framework. And so (sad
enough, but that's life), since IDL 5.1 supports ActiveX, I will almost
certainly abbandon
widget-object programming in IDL and switch to VC++ + IDL as ActiveX
server.

Best regards

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Reinhold

--
 ** *
 Reinhold Schaaf
 Ettighofferstr. 22
 53123 Bonn
 Germany

 Tel.: (49)-228-625713
 Email: schaaf@astro.uni-bonn.de
 ** *

-----== Posted via Deja News, The Leader in Internet Discussion ==-----
http://www.dejanews.com/rg_mkgrp.xp Create Your Own Free Member Forum

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

