Subject: Re: [Object IDL] routines that require user-supplied functions ...

Posted by davidf on Tue, 11 Aug 1998 07:00:00 GMT

View Forum Message <> Reply to Message

Darran Edmundson (dEdmundson@Bigfoot.com) writes:

Here is a *demo* object-IDL code | wrote to illustrate a problem.
This object integrates x*n over the interval (a,b) using the
QROMB function. QROMB requires a user-defined function but |
cannot manage to pass the 'poly' method.

While this is a contrived example, one often wants to pass
object method functions/procedures to other IDL routines. Is
there a generic way of passing object methods to such intrinsic
routines?

VVVVYVYVYVYVYV

| don't believe there is a generic way of passing object
methods to intrinsic routines unless (perhaps) they are
written in such a way as to expect them. It is clear QROMB
has not been.

Nor have | found in the 15 minutes or so that | fooled around
with this a completely satisfactory "object-like" way to

solve this problem, although I did find a contrived solution
that uses a common block.

The idea is this: Put the self object in a common block

that can be declared in the POLY function. (It is a

restraint of the QROMB routine that POLY be defined with
one and only one parameter and that it be a vector of
values for which the function is solved.) This gets the

self object into the POLY function. BUT...not as a structure,
as an object reference.

This means that the equation to be solved can't look
like this, as it does in Darran's code:

x"\(self.degree)

because the data of an object is hidden and is accessible
only by its methods. So | had to write a Get_Degree method
for the object that returns the degree of the function.

My solution looks like this:

function test4::init, degree, a, b

common polycommon, xx

= NANNNNNNNNNNNNNNNNN
’

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8136&goto=12628#msg_12628
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12628
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

self.degree = degree

self.a=a
selfb=>b
xx = self

= ANANANNNNANN

print, 'Integral =", self->integral()
return, 1
end

function test4::integral
return, gromb('poly’, self.a, self.b)
end

function test4::get_degree
return, self.degree
end

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
’

function poly, x
common polycommon, obj

NANNNNNNNNNNNNNNNNNNNN
b

return, x"(obj->get_degree())
NNNNNNNNNNNNNNNNNNNNN

end

pro test4d __define
struct = {test4, degree:0.0, a:0.0, b:0.0}
end

This object can be created and called like this:
t = obj_new('test4',3.0,0.0,1.0)
Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting

E-Mail: davidf@dfanning.com

Phone: 970-221-0438, Toll Free Book Orders: 1-888-461-0155
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

