
Subject: Re: [Object IDL] routines that require user-supplied functions ...
Posted by davidf on Tue, 11 Aug 1998 07:00:00 GMT
View Forum Message <> Reply to Message

Darran Edmundson (dEdmundson@Bigfoot.com) writes:

> Here is a *demo* object-IDL code I wrote to illustrate a problem.
> This object integrates x^n over the interval (a,b) using the
> QROMB function. QROMB requires a user-defined function but I
> cannot manage to pass the 'poly' method.
>
> While this is a contrived example, one often wants to pass
> object method functions/procedures to other IDL routines. Is
> there a generic way of passing object methods to such intrinsic
> routines?

I don't believe there is a generic way of passing object
methods to intrinsic routines unless (perhaps) they are
written in such a way as to expect them. It is clear QROMB
has not been.

Nor have I found in the 15 minutes or so that I fooled around
with this a completely satisfactory "object-like" way to
solve this problem, although I did find a contrived solution
that uses a common block.

The idea is this: Put the self object in a common block
that can be declared in the POLY function. (It is a
restraint of the QROMB routine that POLY be defined with
one and only one parameter and that it be a vector of
values for which the function is solved.) This gets the
self object into the POLY function. BUT...not as a structure,
as an object reference.

This means that the equation to be solved can't look
like this, as it does in Darran's code:

 x^(self.degree)

because the data of an object is hidden and is accessible
only by its methods. So I had to write a Get_Degree method
for the object that returns the degree of the function.

My solution looks like this:

 function test4::init, degree, a, b
 common polycommon, xx
 ; ^^^^^^^^^^^^^^^^^^^

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8136&goto=12628#msg_12628
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12628
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 self.degree = degree
 self.a = a
 self.b = b
 xx = self
 ; ^^^^^^^^^
 print, 'Integral = ', self->integral()
 return, 1
 end

 function test4::integral
 return, qromb('poly', self.a, self.b)
 end

 function test4::get_degree
 return, self.degree
 end
 ;^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

 function poly, x
 common polycommon, obj
 ;^^^^^^^^^^^^^^^^^^^^^
 return, x^(obj->get_degree())
 ; ^^^^^^^^^^^^^^^^^^^^^
 end

 pro test4__define
 struct = {test4, degree:0.0, a:0.0, b:0.0}
 end

This object can be created and called like this:

 t = obj_new('test4',3.0,0.0,1.0)

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting
E-Mail: davidf@dfanning.com
Phone: 970-221-0438, Toll Free Book Orders: 1-888-461-0155
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

