Subject: Re: Saved objects.
Posted by davidf on Tue, 08 Sep 1998 07:00:00 GMT

View Forum Message <> Reply to Message

Imanol Echave (ccaeccai@sc.ehu.es) writes:

> When you create a new object with OBJ_NEW, IDL searchs automatically the file
> object__define.pro and compiles it, but... What do you have to do when you

> RESTORE an object? The object definition and methods aren't compiled, and an
> error is raised when you use the object. | can compile the file "manually”, but
Here is an edited version of a newsgroup exchange

on saving and restoring objects that J.D. Smith and |

carried on recently. It describes a manual way of

compiling the object's methods, but | don't think

there is any way around this, short of putting each
method routine in its own file.

Interestingly, | just ran into a project this week

where it is important that we save the graphical output
in a database along with the information we used to
construct the plot. It must be stored in such as way
that we can reconstruct the exact graphic window.

| am thinking of implementing this functionality

as a Save/Restore object.

Cheers,

David

Subject: Objects, File Names, and the Save command.
From: "J.D. Smith" <jdsmith@astrosun.tn.cornell.edu>

| am exploring a very promising use of the save/restore commands in
conjunction with objects. Given some complex object which contains a
host of different types of data (with pointers, etc.), as part of a

class method, one adds:

save, self, FILENAME=fname

to register on disk an accurate snapshot of the object. To restore,
later, use:

restore,pname,RESTORED_OBJECTS=0bj,/RELAXED_STRUCTURE_ASSIGN MENT

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8256&goto=12827#msg_12827
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12827
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

and the object is in obj, but also brought back as the local variable
*self*. I'm not sure the relaxed structure assignment flag works for
objects, but | don't see why it wouldn't. So this can be used in two
ways ...

1. To allow an object to replace *itself* with another, perhaps older
copy (or even an altogether different type of object -- but the utility

of self-transmogrifying objects is not yet apparent to me). This works
because the implicit self variable is passed by reference (as it has to
be). This will lead to at least one unreferenced heap variable unless
garbage collection steps are taken, l.e. by saying:

oldself=self

restore, pname,/RELAXED_STRUCTURE

obj_destroy,oldself

2. To allow a program module to load up an object on the fly, through
the obj variable in the above statement (only one should be loaded if
only one was saved).

This is all very convenient but leads to the strange situation of a

loaded object in memory which exists there *before* any of the class
methods, and/or the __define procedure for that object class are
compiled. Therefore, the usual paradigm of putting all class methods in
the _ define procedure file before this procedure (suggested by RSI
itself in the manual) fails. How can the method be found if the

__define doesn't have to be compiled and isn't in it's own file? |

would like to come up with a solution which doesn't involve a separate
class__method.pro file for each method. Any ideas?

Thanks,

JD

To which | replied like this:
How about something like this:

thisClass = Obj_Class(self)
Resolve_Routine, thisClass +'_define'

| haven't tested this, but don't see any reason it wouldn't work.
Resolve_Routine is the way IDL procedures and functions can
be compiled from *within* other procedures and functions.

Cheers,

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

J.D. replied with this:

This will certainly work, but has the unfortunate side-effect of
re-compiling every method each time an object is read from disk...
thought of modifying it slightly to the tune of:
thisdef=0bj_Class(self)+'__ DEFINE'

if (where(routine_info() eq thisdef))[0] eq -1 then
resolve_routine,thisdef

So that it would only compile if presently undefined.

Page 3 of 3 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

