
Subject: Re: bytarr type conversion/structures
Posted by Martin Schultz on Mon, 28 Sep 1998 07:00:00 GMT
View Forum Message <> Reply to Message

Kevin Ivory wrote:
>
> Jacobus Koster wrote:
> [...]

> Looks like even "pro DF" is going to learn something today.
>
> It is almost always possible to do type conversions without writing
> into a dummy file and reading it again. The equivalent of Fortran
> internal files are IDL strings. So you will have to look into the READS
> procedure. Start off with the following lines:
>
> header_bytes = bytarr(2048, /nozero)
> openr, lun, /get_lun, image_file
> readu, lun, header_bytes
> free_lun, lun ; "forget forever about the file"
> header_string = string(header_bytes)
> ; read 100 descriptor structures from header_string
> header_structures = ({type:0,length:0,offset:0})[100]
> reads, header_string, header_structures
> ; now read the data with formatted reads
>
> I don't know about the pointer part (deleted from original message).
>
> Cheers,
> Kevin
> --

This is very nice, Kevin. Maybe I can contribute another 2 cents to this
problem: As DF (in my definition about the only pro around) pointed out,
there is a contradiction between "forget forever about the file" and
retrieve the data later. Yet, I have recently written a few routines
that achieve almost that. What I needed to do sounds somewhat similar:
"parse" a huge file for its header structures *once* (there are several
spread out over the file in our case), then store data pointers (for
point_lun) and access the data as soon as it is needed. The whole thing
is too complicated and long to "give away" on this newsgroup, but I will
eventually place it on my web page (after some more testing), and I will
give a few hints here:

* I use the logical file unit as a relational link between the data
files and some "datainfo" structures that describe the contents and
dimensions of the data as well as "where to find it" (the file pointer).
For this, you need to avoid get_lun, because you must make sure that you

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8405&goto=12995#msg_12995
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12995
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

can re-open your files with the same unit numbers if they have been
closed by some unaware user. I attach a little function GET_FREELUN that
serves this purpose.
* When the user openes another file, I must first check whether this
file had been opened before, so that it is not necessary to open and
parse it again.
* Since I want access to all previously opened files at some point, I
must use a global common block that contains a pointer to my array of
datainfo and fileinfo structures (fileinfo stores filenames, logical
units and some more stuff).
* As soon as I want to access some data that I select from the
information stored in datainfo (in our case of a global atmospheric
model, this can be a certain species at a certain timestep for example),
I use the LUN field of datainfo to get the associated file name, make
sure the file is open, set the file pointer, and read the data. The data
is stored within the datainfo structure (referenced from a pointer), so
I only have to read it once.

Hope this shows a way and helps to see a little clearer,
Martin.

PS: Note the difference between GET_LUN and GET_FREELUN is that
GET_FREELUN first tests the information that IDL has available on opened
files (help,/files) before it returns a free unit number. Hence, you can
mix "explicit" assignments with "automatic" ones. In order to avoid
conflicts with GET_LUN, unit numbers must be smaller than 100 (but that
leaves you with 100 units instead of the standard 28!

--
 -- -------
Dr. Martin Schultz
Department for Engineering&Applied Sciences, Harvard University
109 Pierce Hall, 29 Oxford St., Cambridge, MA-02138, USA

phone: (617)-496-8318
fax : (617)-495-4551

e-mail: mgs@io.harvard.edu
Internet-homepage: http://www-as.harvard.edu/people/staff/mgs/
 -- -------

 ;--- --
;+
; NAME:
; GET_FREELUN (function)
;
; PURPOSE:

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; Return next available logical unit number. Unlike
; the internal GET_LUN procedure, this function is not
; restricted to unit numbers above 100, and it will
; detect any blocked unit number.
;
; CATEGORY:
; I/O tools
;
; CALLING SEQUENCE:
; lun = GET_FREELUN([LUN])
;
; INPUTS:
; none
;
; KEYWORD PARAMETERS:
; none
;
; OUTPUTS:
; The lowest available logical unit number. This number is
; also returned in the LUN parameter for later use.
;
; SUBROUTINES:
;
; REQUIREMENTS:
;
; NOTES:
;
; EXAMPLE:
; openw,get_freelun(lun),filename
;
; MODIFICATION HISTORY:
; mgs, 17 Sep 1998: VERSION 1.00
;
;-
; Copyright (C) 1998, Martin Schultz, Harvard University
; This software is provided as is without any warranty
; whatsoever. It may be freely used, copied or distributed
; for non-commercial purposes. This copyright notice must be
; kept with any copy of this software. If this software shall
; be used commercially or sold as part of a larger package,
; please contact the author to arrange payment.
; The copyright is granted if this program becomes part of the
; IDL distribution.
; Bugs and comments should be directed to mgs@io.harvard.edu
; with subject "IDL routine get_freelun"
 ;--- --

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

function get_freelun,lun

 help,/files,output=list

 lun = 1

 ; at least one file open
 ; find lowest available unit number
 if (n_elements(list) gt 1) then begin

 ; maximum allowed number of open files exceeded?
 if (n_elements(list) gt 99) then $
 message,'Cannot handle any more open files'

 ; extract numbers and compare to expectation
 for i=1,n_elements(list)-1 do begin
 usedlun = fix(strmid(list[i],0,3))
 if (usedlun gt i) then begin
 lun = i
 return,lun ; this one's free
 endif
 endfor
 ; next free unit is greater than all used ones
 lun = i
 return,lun

 endif else $; no file opened
 return,lun

end

File Attachments
1) get_freelun.pro, downloaded 89 times

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=getfile&id=52
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

