Subject: Restored Object Method Compilation
Posted by J.D. Smith on Sun, 04 Oct 1998 07:00:00 GMT

View Forum Message <> Reply to Message

Object Programmers,

| have recently discovered a problem with the object method compilation
technique discussed earlier in this newsgroup by David Fanning and
myself. This discussion is archived on David's IDL page
(http://www.dfanning.com/tips/saved_objects.html). The technique
discussed basically allows for the compilation of uncompiled methods for
objects restored from file when the entire set of methods resides in the
file class__define.pro. The alternative (unacceptable in my opinion) is

to give each method its own file of the form class__method.pro

The problem relates to superclasses. The normal IDL implicit
compilation of an object's methods (contained in class__define.pro), as
when invoking obj_new('class’), proceeds up the inheritance tree,
compiling and defining all of the superclasses which are not yet
defined. Our technique does not compile superclasses, and so our
methods are broken if they fail to override, or chain up to a superclass
method.

One might think that all you would need to do is call the class__define
procedure for the class of the restored object, and all superclasses

would be defined and compiled as encountered. This works in any context
but this one. The reason why is that a restored object contains

implicitly in its definition the class structure definitions of all its
superclasses. Therefore, when class__define is called, it doesn't call

or compile any of the superclass__define definitions. As far as IDL is
concerned, "superclass" is already a valid class (struct) and nothing
further need be done.

The only solution is to proceed up the inheritance tree compiling by
hand. A procedure, resolve_obj, which accomplishes this, is attached.
Note that the recursion must be breadth first as coded... that is, a

class must be compiled before its superclasses (because how would we
know which superclasses it has otherwise). The way to call this routine
on a restored object is:

resolve_obj,obj

Alternatively, if you have the name of a class rather than an object
instance, you could do:

resolve_obj,CLASS=class

and the recursion would proceed in the same way. To reiterate, this

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8425&goto=13041#msg_13041
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=13041
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

procedure is necessary only when an class has been *defined* but not
*compiled*.

JD
pro resolve_obj,0bj,CLASS=class,ROUTINE_INFO=ri
if n_params() ne 0 then begin
if NOT obj_valid(obj) then begin
message,'Object is not valid.'
endif
class=obj_class(obj)
endif

if n_elements(ri) eq O then ri=routine_info()

for i=0,n_elements(class)-1 do begin
defpro=class][i]+'__DEFINE'
if (where(ri eq defpro))[0] eq -1 then resolve_routine,defpro
supers=obj_class(class][i]/SUPERCLASS,COUNT=cnt)
if cnt gt 0 then resolve_obj,CLASS=supers,ROUTINE_INFO-=ri
endfor
end

File Attachnents

1) resolve_obj.pro, downl oaded 105 ti nes

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=getfile&id=55
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

