
Subject: Programs that Work on 24-bit Color Displays (Long)
Posted by davidf on Sun, 08 Nov 1998 08:00:00 GMT
View Forum Message <> Reply to Message

Hi Folks,

By far and away the most useful program on my
web page is XCOLORS. It has a number of useful
features, but one of the most important is that
it can be used to write programs that work
correctly on 24-bit color displays. People are
still confused (or unaware) of how this works,
so I thought I would write a short tutorial.

The XCOLORS program itself can be found here:

 http://www.dfanning.com/programs/xcolors.pro

The problem with a 24-bit color display is that
colors are expressed directly and are not coupled
to indices in the color table, as they are on
an 8-bit color display. Thus, when you change the
color table values (using, for example, a program
like XLOADCT) the colors in your display windows
remain unchanged. To update the colors in the
window, you must re-execute the graphics command
that put the graphic in the window in the first
place. IDL will--as part of the process of displaying
the graphic--run the pixel values through the color
table vectors to get the specific color for the
graphic.

So, quite simply, to make programs on 24-bit displays
act like the same programs on 8-bit displays you have
to know when the color table vectors have been changed
so that you can re-display your graphic. But a program
like XLOADCT can't notify you when you it changes the
color table vectors. (Although I hear that the IDL
5.2 version will, finally, be able to do this, although
it doesn't yet in the beta versions I have seen.)

The program XCOLORS *can* notify you. It is currently
set up to do this in two different ways. First, it
works in widget programs by notifying a widget of
your choice. It does this by sending that widget
an event structure (I.e., it works like all other
widgets work). The event handler for that widget
gets this event structure and can do whatever is

Page 1 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8602&goto=13350#msg_13350
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=13350
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

appropriate with it.

The event structure is defined like this:

 event = { XCOLORS_LOAD, ID:0L, TOP:0L, HANDLER:0L, $
	R:BytArr(256), G:BytArr(256), B:BytArr(256) }

What you have to do is tell XCOLORS what values to
put in the ID and TOP fields of this structure. The
R, G, and B fields have the current color table
vectors in them. You can use this information or not.
Quite often that information can be safely ignored.

Here is an example of how it works. Here is a short
widget program that displays a shaded surface. This
is the widget definition module for the program.
Save this program in a file named "shader.pro".

**
 PRO Shader, data

 ; Need data?

 IF N_Elements(data) EQ 0 THEN data = Dist(30)

 ; 24 Bit Color Display?

 Device, Get_Visual_Depth=thisDepth
 IF thisDepth GT 8 THEN BEGIN
 Device, Decomposed=0
 truecolor = 1
 ENDIF ELSE truecolor = 0

 ; Load color table.

 LoadCT, 5, /Silent

 ; Create widgets.

 tlb = Widget_Base(Column=1)
 colors = Widget_Button(tlb, Value='XColors', $
 Event_Pro='Shader_Colors')
 drawID = Widget_Draw(tlb, XSize=400, YSize=400)
 Widget_Control, tlb, /Realize

 ; Get window index number, display graphic.

 Widget_Control, drawID, Get_Value=wid

Page 2 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 WSet, wid
 Shade_Surf, data

 ; Store info structure.

 info = {data:data, wid:wid, truecolor:truecolor}
 Widget_Control, tlb, Set_UValue=info, /No_Copy

 ; Event loop.

 XManager, 'shader', tlb, /No_Block
 END
**

This program, Shader, has a button that loads different
color tables by calling XCOLORS. How should that event
handler be written?

Well, it should be written so that it handles two
possible events: the one from the XCOLORS button and
a second one that comes from XCOLORS when it loads
new color table vectors.

Here is the event handler. (Add this to the "shader.pro"
file, but be sure you place it FIRST in the file,
before the SHADER procedure. Do you know why?)

**
 PRO Shader_Colors, event

 ; What kind of event is this?

 thisEvent = Tag_Names(event, /Structure_Name)

	; Do the right thing. :-)

 CASE thisEvent OF

 'WIDGET_BUTTON': XColors, Group_Leader=event.top, $
 NotifyID=[event.id, event.top]

 'XCOLORS_LOAD': BEGIN
 Widget_Control, event.top, Get_UValue=info, /No_Copy
 IF info.truecolor THEN BEGIN
 WSet, info.wid
 Shade_Surf, info.data
 ENDIF
 Widget_Control, event.top, Set_UValue=info, /No_Copy

Page 3 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ENDCASE

 ENDCASE
 END
**

Notice that if the event is a button event that XCOLORS
is called with the NOTIFYID keyword set. The first widget
identified in this two-element vector is the one that will
fill the ID field of the XCOLORS_LOAD event structure.
The second widget in the two-element vector identifies the
widget that will be placed in the TOP field of that
event structure.

If the event structure in this event handler is an
XCOLORS_LOAD event structure and the display is
a 24-bit display (indicated by the truecolor flag,
which was set in the widget definition module),
then the graphic is re-displayed.

Try running this program on a 24-bit color display.
It will act identically to the same program run
on an 8-bit display. (There may be a short
delay while the event is processed, but this should
be hardly noticeable.)

The second way XCOLORS is useful is with objects.
I write a lot of graphic objects these days and
I am often want to use color tables with these
objects. In fact, I often want to work with these
objects at the IDL command line.

Here is an extremely simple object that does
a shaded surface plot like the program above.
(Save this code in a file named "shader__define.pro".
Note, there are *two* underscore characters in that
name.)

**

 PRO Shader::Draw
 Shade_Surf, *self.data
 END;--

 PRO Shader::CleanUp
 Ptr_Free, self.data
 END;--

Page 4 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 FUNCTION Shader::Iint, data
 IF N_Elements(data) EQ 0 THEN data = Dist(30)
 self.data = Ptr_New(data)
 RETURN, 1
 END;--

 PRO Shader__Define
 struct = {SHADER, data:Ptr_New()}
 END;--

**

On a 24-bit color display I use the object like this:

 IDL> Device, Decomposed=0
 IDL> thisObject = Obj_New('SHADER')
 IDL> Window
 IDL> thisObject->Draw

Now, what I want is to load different color tables and
see the shaded surface updated immediately. In this
case, I use the NOTIFYOBJ keyword to XCOLORS. The
value of this keyword must be a stucture that has
three fields: OBJECT, METHOD, and WID. The OBJECT
field should have an object reference; the METHOD
field should have the name of a method of that object
I want to call when the color vectors change (in this
case, I want the "Draw" method to be called); and the
WID field should have the graphic window index number
of the window I want the graphic output to be displayed
in. I call XCOLORS like this:

 IDL> XCOLORS, NotifyObj={OBJECT:thisObject, $
 Method:'DRAW', WID:!D.Window}

There you go! A color table loading tool that works
on 24-bit displays just like it works on 8-bit displays. :-)

I'll leave it to you to discover the other useful
properties of XCOLORS, but I'll give you a hint:
it doesn't use COMMON blocks. How could that be
useful, do you think?

Cheers,

Page 5 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

David

--
David Fanning, Ph.D.
Fanning Software Consulting
E-Mail: davidf@dfanning.com
Phone: 970-221-0438, Toll-Free Book Orders: 1-888-461-0155
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Page 6 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

