
Subject: Object Tree
Posted by J.D. Smith on Mon, 16 Nov 1998 08:00:00 GMT
View Forum Message <> Reply to Message

I've made an Object-Based tree that might be useful... Basically, to use
it, derive a class from it, complete with node data, and possible data
collection, and/or modification methods. Each instance of this class is
a single node in a Tree, and contains two pointers: children and
siblings, specifying a list of this node's children (may have none), and
siblings (at least one... itself).

Things you can do with it:

*Add children and/or siblings to a given node.
*Delete a given node and all descendents.
*Delete an entire tree *except* a given node and descendents, replacing
the Tree.
*Obtain a list of a node's descendents.
*Obtain a list of all leafs (childless nodes) beneath a node.
*Visit all descendents or all descending leafs and call a specified
method on them (for data collection or modification). This is where the
real work is done.

All recursion is depth-first.

As an example of what can be done, I made a toy "TicTacToe" class which
populates the entire game tree for this simple game. I visit all
endgames (leafs), and collect win/loss statistics. This tree had around
350,000 nodes.

If you have data which is naturally organized heirarchically, this may
be useful for you.

JD

--
 J.D. Smith |*| WORK: (607) 255-5842
 Cornell University Dept. of Astronomy |*| (607) 255-6263
 304 Space Sciences Bldg. |*| FAX: (607) 255-5875
 Ithaca, NY 14853 |*|
;+
; NAME: ObjTree
;
; PURPOSE: A Object Based data Tree
;
; CATEGORY: Object-Based Data Manipulation
;
; METHODS:

Page 1 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8655&goto=13485#msg_13485
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=13485
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;
; CHILDREN(): Return this node's child object(s).
;
; SIBLING(): Return this node's sibling object(s)
;
; SETVALUE: Sets Object Data Values -- use ADD unless custom addition.
; 	KEYWORDS: Each keyword sets the corresponding member data with the
; 	passed value, which can either be an object list or pointer to one.
; 		CHILDREN: The node's children
; 		SIBLINGS: The node's siblings ... points also to parent's
; 			 children list.
;
; LEAFS, list: return a list of all leafs below this node.
;
; FAMILY, list: return a list of all of this node's descendents.
;
; VISIT, method: Recursively call method method on all descendents,
; passing it any extra keywords (which might be required to effect
; any modification of the node data).
;
; LEAFVISIT, method: Same as visit, but only for leafs.
;
; ADD, entry: Add the object entry to this node.
; 	KEYWORDS:
; 		SIBLING: Add entry as a sibling instead of default child.
; 	NOTE: An added sibling is always younger than any existing siblings.
; 	An added child inherits is made the sibling of any existing children.
;
; DELETE: Delete this node, and all of its desendents (recursively).
; 	NOTE: If this node has a parent, its child reference is assigned
; 	to the next younger sibling, if no older siblings exist. If no other
; 	siblings exist at all, the parent's child reference is cleared.
;
; PRUNE: Delete the entire tree *except* this node and its descendents,
; 	leaving this node as the root of the Tree.
; 	
; CLEANUP: (Automotically called)
;
; NOTES: Each node in the tree is represented by a single instance
; of this class. This tree has these properties: A node's list of
; children is the same list as its children's list of siblings.. not
; a copy, the *same* list -- modifying the children list at the same
; time modifies the children's sibling list. New generations can
; only be added at extremities of the tree, i.e. at those nodes
; which don't yet have children. Otherwise, new children will join
; those children already living. You may use SetValue to circumvent
; these limits, but beware: inbred trees may result.
;

Page 2 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;
; MODIFICATION HISTORY:
;	11/13/98 -- Added Leafs and LeafVisit. JDS
; 6/4/98 -- Removed Gen, changed ModPro to a Call_Method in Method. JDS
; 	5/12/98 -- JD Smith
;-

function ObjTree::Children
 return, self.children
end

function ObjTree::Siblings
 return, self.siblings
end

pro ObjTree::SetValue, CHILDREN=child, SIBLINGS=sib
 if keyword_set(child) then begin
 ;; find out if list or pointer is passed
 s=size(child,/TYPE)
 if s eq 10 then begin ;it's a pointer
 if child ne self.children then begin ;points at different heap vars?
 ptr_free, self.children ;free memory of old list
 self.children=child
 endif
 endif else begin
 if ptr_valid(self.children) then *self.children=child $
 else self.children=ptr_new(child)
 endelse
 endif
 if keyword_set(sib) then begin
 s=size(sib,/TYPE)
 if s eq 10 then begin ;it's a pointer
 if sib ne self.siblings then begin ;point at different heap vars?
 ptr_free, self.siblings
 self.siblings=sib
 endif
 endif else begin
 *self.siblings=sib ;siblings must be valid, since *we're* alive.
 endelse
 endif
end

 ;===
==================
; Leafs - Find all of the Leaves below me
 ;===
==================
pro ObjTree::Leafs,list

Page 3 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 c=self.children
 if ptr_valid(c) then begin
 for i=0,n_elements(*c)-1 do (*c)[i]->Leafs, list
 endif else begin ; I am a leaf!
 if n_elements(list) eq 0 then list=self else list=[list,self]
 endelse
end

 ;===
==================
; Family - Recurs over my decendents and return a list of them.
 ;===
==================
pro ObjTree::Family,list
 c=self.children
 if ptr_valid(c) then begin
 if n_elements(list) eq 0 then list=[*c] else list=[list,*c]
 for i=0,n_elements(*c)-1 do (*c)[i]->Family, list
 endif
end

 ;===
==================
; 	Visit: Recurs over my descendents, modifying the node data with a
; 	method "Method" (presumably of an inheriting class). Any keywords
; 	passed are given directly to Method to do with as it pleases
; 	(though in general it will modify or collect data). As a simple
; 	example, suppose each node had some data member which needed to be
; 	incremented. A method 'Increment' could do this, and be passed the
; 	INCREMENT to perform (as a keyword).
; 	 e.g. thisNode->Visit, 'Increment',INCREMENT=10
; 	Or maybe you need to collect some data, with
; 	 e.g. thisNode->Visit, 'DataCollect', OUTDATA=out
; 	for putting a summary of data into "out" (_REF_EXTRA is employed).
 ;===
==================
pro ObjTree::Visit,Method,_REF_EXTRA=e
 if ptr_valid(self.children) then $
 for i=0, n_elements(*self.children)-1 do begin
 Call_Method,Method,(*self.children)[i],_EXTRA=e
 (*self.children)[i]->Visit,Method, _EXTRA=e ;recurs, depth first!
 endfor
end

 ;===
==================
; 	LeafVisit: Same as Visit except on underlying leafs only.
 ;===

Page 4 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

==================
pro ObjTree::LeafVisit, Method, _REF_EXTRA=e
 if ptr_valid(self.children) then begin
 for i=0, n_elements(*self.children)-1 do $
 (*self.children)[i]->LeafVisit,Method, _EXTRA=e
 endif else begin
 Call_Method, Method, self, _EXTRA=e
 endelse
end

 ;===
==================
; 	Add: Add element(s), as either children or siblings (children
; 	by default), to the current node (this object instance).
; 	Siblings added are always younger (later in list) than any existing
; 	siblings.. and children added are assigned to be younger than
; 	any children already present, and at their depth. This means
; 	that new generations can only be created at the bottom of the
; 	tree (if the root is at the top).
 ;===
==================
pro ObjTree::Add, list, SIBLINGS=sib
 if keyword_set(sib) then begin ;inserting new sibling(s)
 ;; add them to the end of my list
 *self.siblings=[*self.siblings,list]
 ;; set their siblings array the same as mine, freeing any old siblings
 ;; list if any (should't have any, inbred trees are trouble!)
 for i=0,n_elements(list)-1 do $
 list[i]->SetValue,SIBLINGS=self.siblings
 endif else begin ;inserting a new child
 if ptr_valid(self.children) then begin
 ;; add the children at the end of my children list
 *self.children=[*self.children,list]
 endif else begin
 self.children=ptr_new(list)
 endelse
 ;; set their *siblings* array be my *children* array, freeing any
 ;; siblings list if any (but there shouldn't really be).
 for i=0,n_elements(list)-1 do $
 list[i]->SetValue,SIBLINGS=self.children
 endelse
end

 ;===
==================
;	Delete: Delete this node and all descendents, clearing
;	the child list of its parent if this node has no siblings.
 ;===

Page 5 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

==================
pro ObjTree::Delete
 sibs=n_elements(*self.siblings) ;if only 1, I'm an only child.
 if sibs eq 1 then self.siblings=ptr_new() else $
 *self.siblings=(*self.siblings)[where(*self.siblings ne self)]
 obj_destroy,self ;call cleanup recursively to kill descendents
end

 ;===
==================
;	Prune: Delete everything in Tree except this node and it's
;	descendents, leaving this node as the root of the Tree.
 ;===
==================
pro ObjTree::Prune, Tree
 ;; remove myself from my list of siblings (and from my parents list of
 ;; children -- it's the same list!!)
 if n_elements(*self.siblings) gt 1 then $
 *self.siblings=(*self.siblings)[where(*self.siblings ne self)] $
 else $
 self.siblings=ptr_new() ;I was an only child

 ;; Destroy the tree around us, as we hide, not on the list for destruction.
 obj_destroy,Tree
 Tree=self ;I am now the root of this tree!
end

 ;===
==================
;	Cleanup: Recursively destroy all descendents, depth first.
 ;===
==================
pro ObjTree::Cleanup
 ;; Call Cleanup on children first, then cleanup the siblings list (which
 ;; will also free the children list of the siblings' parent).
 if ptr_valid(self.children) then begin
 obj_destroy,*self.children
 endif
 if ptr_valid(self.siblings) then ptr_free,self.siblings
end

 ;===
==================
; ObjTree__define: define the ObjWidget Class structure
 ;===
==================
pro ObjTree__define
 ;; define a tree member class

Page 6 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 struct={ObjTree, $
 siblings:ptr_new(),$;an array of siblings (at least including me!)
 children:ptr_new()} ;an array of children (possibly childless)
end

File Attachments
1) objtree__define.pro, downloaded 76 times

Page 7 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=getfile&id=64
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

