
Subject: Re: Slicer3 followup
Posted by thompson on Wed, 20 Jan 1999 08:00:00 GMT
View Forum Message <> Reply to Message

Bob Yantosca <bmy@io.harvard.edu> writes:

> I am running IDL 5.1 on the SGI-Origin platform, and have noticed a couple
> of things about the library routine "slicer3.pro"

> (1) slicer3.pro contains the following call to XMANAGER with the /MODAL
> keyword:

> XMANAGER, 'Slicer3', wMainBase, EVENT_HANDLER='Viz3D_Event', $
> /MODAL, CLEANUP='Viz3D_KillMain'

> However, in IDL 5.1, the /MODAL keyword in XMANAGER has been superseded by
> a call to /MODAL in WIDGET_BASE. Am not sure what side effects this will
> cause, but at some point perhaps RSI should tidy this up.

I hope that the way RSI tidies this up is to change their mind and decide that
/MODAL in XMANAGER isn't obsolete after all. As discussed previously in this
newsgroup, the newly recommended way of using /MODAL in WIDGET_BASE does not
provide some crucially important functionality that has always been available
with XMANAGER.

I don't think your problem is caused by the /MODAL keyword, but RSI did give me
some directions as to how to fix xmanager.pro in IDL/v5.1 and /v5.2. The fixed
version is below. See if this solves your problems.

William Thompson

 ==
===================
; $Id: xmanager.pro,v 1.42 1998/01/21 22:09:16 lubos Exp $
;
; Copyright (c) 1991-1998, Research Systems, Inc. All rights reserved.
;	Unauthorized reproduction prohibited.

;+
; NAME:
;	XMANAGER
;
; PURPOSE:
;	Provide management for widgets client applications created using IDL.
;
; CATEGORY:

Page 1 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=35
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8961&goto=14127#msg_14127
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=14127
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;	Widgets.
;
; CALLING SEQUENCE:
;	XMANAGER [, Name, ID]
;
; OPTIONAL INPUTS:
;	NAME:	A string giving the name of the application that is being
;		registered.
;
;	ID:	The widget ID of the top level base of the new client.
;
; KEYWORD PARAMETERS:
;	BACKGROUND:
;		 -- -
;		| PLEASE NOTE: This keyword is OBSOLETE. It's functionality |
;		| is provided by the TIMER keyword to the WIDGET_CONTROL |
;		| procedure. |
;		 -- -
;
;	CATCH: If TRUE, tells XMANAGER to use CATCH when dispatching
;		widget events. If FALSE, CATCH is not used and execution
;		halts on error. The default is TRUE. If CATCH is specified,
;		the internal state of XMANAGER is updated and it returns
;		immediately without taking any further action. CATCH
;		is only effective if XMANAGER is blocking to dispatch
;		errors. If active command line event dispatching is in
;		use, it has no effect.
;
;	CLEANUP: This keyword contains a string that is the name of the
;		routine called when the widget dies. If not specified,
;		no routine is called. The cleanup routine must accept one
;		parameter which is the widget id of the dying widget. This
;		routine is set as the KILL_NOTIFY routine for the widget.
;
;	EVENT_HANDLER: The name of the event handling routine that is to be
;		called when a widget event occurs in the registered
;		application. If this keyword is not supplied, the Xmanager
;		will construct a default name by adding the "_EVENT" suffix
;		to the NAME argument. See below for a more detailed
;		explanation.
;
;	GROUP_LEADER: The widget id of the group leader for the application
;		being registered. When the leader dies, all widgets that have
;		that leader will also die.
;
;		For example, a widget that views a help file for a demo
;		widget would have that demo widget as it's leader. When
;		the help widget is registered, it sets the keyword

Page 2 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;		GROUP_LEADER to the widget id of the demo widget. If
;		the demo widget is destroyed, the help widget led by
;		the it would be killed by the XMANAGER.
;
;	JUST_REG:	
;		This keyword tells the manager to just register the widget
;		but not to start doing the event processing. This is useful
;		when you want to register a group of related top level widgets
;		but need to regain control immediately afterwards.
;
;		NOTE: JUST_REG does not do the same thing as NO_BLOCK. This is
;		explained in detail below under "SIDE EFFECTS".
;
;	 MODAL:
;		 -- --
;		| PLEASE NOTE: This keyword is OBSOLETE. It's functionality |
;		| is provided by the MODAL keyword to the WIDGET_BASE |
;		| procedure. |
;		 -- --
;
;		When this keyword is set, the widget that is being registered
;		traps all events and desensitizes all the other widgets. It
;		is useful when input from the user is necessary before
;		continuing. Once the modal widget dies, the others are
;		resensitized and the normal event processing is restored.
;		XMANAGER is therefore using sensitivity to provide the
;		illusion of modality. The WIDGET_BASE keyword is a newer
;		IDL feature that provides the real thing.
;
;	NO_BLOCK: If set, tells XMANAGER that the registering client
;		does not require XMANAGER to block if active command line
;		event processing is available. If active command line
;		event processing is available *AND* every current XMANAGER
;		client specifies NO_BLOCK, then XMANAGER will not block
;		and the user will have access to the command line while
;		widget applications are running.
;
;		NOTE: NO_BLOCK does not do the same thing as JUST_REG. This is
;		explained in detail below under "SIDE EFFECTS".
;
; OUTPUTS:
;	No outputs.
;
; COMMON BLOCKS:
;	MANAGED
;	XMANAGER_LOCAL:
;		Common blocks used for module state maintenance. These common
;		blocks are considered private to this module and should not

Page 3 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;		be referenced outside RSI supplied routines. They are
;		subject to change without notice.
;	
;
; SIDE EFFECTS:
;
; JUST_REG vs NO_BLOCK
; --------------------
; Although their names imply a similar function, the JUST_REG and
;	NO_BLOCK keywords perform very different services. It is important
;	to understand what they do and how they differ.
;
; JUST_REG tells XMANAGER that it should simply register a client
;	and then return immediately. The result is that the client becomes
;	known to XMANAGER, and that future calls to XMANAGER will take this
;	client into account. Therefore, JUST_REG only controls how the
;	registering call to XMANAGER should behave. The registered client
;	can still be registered as requiring XMANAGER to block by not setting
;	NO_BLOCK. In this case, future calls to XMANAGER will block.
;
;	NO_BLOCK tells XMANAGER that the registered client does not
;	require XMANAGER to block if the command processing front end
;	is able to support active command line event processing (described
;	below). XMANAGER remembers this attribute of the client until
;	the client exits, even after the call to XMANAGER that registered the
;	client returns. NO_BLOCK is just a "vote" on how XMANAGER should
;	behave. The final decision is made by XMANAGER by considering the
;	NO_BLOCK attributes of all of its current clients as well as the
;	ability of the command front end in use to support the active command
;	line.
;
; Blocking vs Non-blocking
; ------------------------
;	The issue of blocking in XMANAGER requires some explanation.
;	IDL places incoming widget events into a queue of pending events.
;	The only way to get these events processed and dispatched is to
;	call the WIDGET_EVENT function. Arranging for WIDGET_EVENT to be
;	called properly is the primary job of XMANAGER. XMANAGER offers
;	two different modes of operation:
;
;	 - The first (outermost) XMANAGER processes events by calling
;	 WIDGET_EVENT as necessary until no managed clients remain on
;	 the screen. This is referred to as "blocking", because XMANAGER
;	 does not return to the caller until it is done, and the IDL
;	 command line is not available.
;
;	 - XMANAGER does not block, and instead, the part of IDL
;	 that reads command input also watches for widget events

Page 4 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;	 and calls WIDGET_EVENT as necessary while also reading
;	 command input. This is referred to as "non-blocking" or
;	 "active command line" mode.
;
;	The default is to block. However, if every currently active
;	application specified the NO_BLOCK keyword to XMANAGER, non-blocking
;	mode is used, if possible.
;
;	There are currently 5 separate IDL command input front end
;	implementations:
;
;		- Apple Macintosh IDE
;		- Microsoft Windows IDE
;		- Motif IDE (Unix and VMS)
;		- Unix plain tty
;		- VMS plain tty
;
;	Except for the VMS plain tty, all of these front ends are able to
;	support the non-blocking active command line. VMS users can have
;	an active command line by using the IDLde interface. The decision
;	on whether XMANAGER blocks to process widget events is determined
;	by the following rules, in order of precedence:
;
;	 - Use of the MODAL keyword will cause XMANAGER to block.
;	 - Setting JUST_REG to 1 ensures that XMANAGER will not block.
;	 - If using the VMS plain tty interface, XMANAGER will block.
;	 - If none of the previous rules apply, XMANAGER will block
;	 if any of its currently active clients were registered without
;	 specifying NO_BLOCK. If NO_BLOCK is specified for every client,
;	 XMANAGER will not block and will instead return and allow
;	 active command line processing to take place.
;
;	When possible, applications should set the NO_BLOCK keyword.
;	This allows the IDL command line to be active while events are
;	being processed, which is highly desirable.
;
;
; RESTRICTIONS:
;	The implementation of XMANAGER may change in the future. Details
;	of its internal implementation must not be relied upon --- only
;	its external definition can be considered stable.
;
;	XMANAGER uses several undocumented features provided by the
;	internal WIDGET routines. These features are private to RSI, and
;	are not guaranteed to remain in IDL or to remain unchanged. They
;	exist only to support XMANAGER and should not be used elsewhere:
;
;		WIDGET_CONTROL, /XMANAGER_ACTIVE_COMMAND

Page 5 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;		WIDGET_CONTROL, /MODAL
;		WIDGET_EVENT, /BREAK_ON_EXPOSE
;		WIDGET_EVENT, /EVENT_BREAK
;		WIDGET_EVENT, /XMANAGER_BLOCK
;		WIDGET_INFO, /XMANAGER_BLOCK
;
;	These features are undocumented because they are not considered
;	permanent. Research Systems reserves the right to remove or alter
;	these features at any time.
;
; EXAMPLE USE:
;	To create a widget named Example that is just a base widget with a done
;	button using the XMANAGER you would do the following:
;
;
;	;------ first - the event handler routine ------;
;
; PRO example_event, ev			;this is the routine that
;						;deals with the events in the
;						;example widget.
;	
;	WIDGET_CONTROL, ev.id, GET_UVALUE = uv	;the uservalue is retrieved
;						;from the widget where the
;						;event occurred
;
;	if(uv eq 'DONE') then $;if the event occurred in the
;	 WIDGET_CONTROL, ev.top, /DESTROY	;done button then kill the
; END					;widget example
;
;
;	;------ second - the main routine ------;
;
; PRO example				;this is the main routine
;						;that builds the widget and
;						;registers it with the Xmanager
;	
;	base = WIDGET_BASE(TITLE = 'Example')	;first the base is created
;	
;	done = WIDGET_BUTTON(base, $;next the done button is
;			 TITLE = 'DONE', $;created and it's user value
;			 UVALUE = 'DONE')	;set to "DONE"
;
;	WIDGET_CONTROL, base, /REALIZE		;the widget is realized
;
;	XManager, 'example', base		;finally the example widget
;						;is registered with the
;						;Xmanager
; END

Page 6 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;
;	notes:	First the event handler routine is listed. The handler
;		routine has the same name as the main routine with the
;		characters "_event" added. If you would like to use another
;		event handler name, you would need to pass it's name in as
;		a string to the EVENT_HANDLER keyword. Also notice that the
;		event routine is listed before the main routine. This is
;		because the compiler will not compile the event routine if
;		it was below the main routine. This is only needed if both
;		routines reside in the same file and the file name is the same
;		as the main routine name with the ".pro" extension added.
;
;
; PROCEDURE:
;	When the first widget is registered, initialize the lists and then
;	start processing events. Continue registering widgets and dispatching
;	events until all the widgets have been destroyed. When a widget is
;	killed, destroy all widgets that list the destroyed widget as their
;	leader, if any.
;
; RELATED FUNCTIONS AND PROCEDURES:
;	XREGISTERED, XMTOOL
;
; MODIFICATION HISTORY: Written by Steve Richards, November, 1990
;	SMR, Mar, 1991	Added a cleanup routine keyword to allow dying
;	 widgets to clean themselves up when dying.
;	SMR, May, 1991 Fixed a bug found by Diane Parchomchuk where an error
;	 occurred when registering a widget ight after destroying another.
;	SMR & ACY, July, 1991
;	 Fixed a bug found by Debra Wolkovitch where lone widgets being
;	 destroyed and new ones created caused problems.
;	SMR, Sept, 1991	Changed cleanup to use the new WIDGET_INFO routine.
;	SMR & ACY, Oct, 1991
;	 Fixed a bug where a background event that unregistered itself
;	 after a time would result in an XMANAGER error.
; 	SMR, Mar. 1992	Changed XMANAGER to use enhanced widget functions for
;	 event processing.
;	SMR, Nov. 1992 Changed modal widget handling allowing nesting of
;	 modal widgets. The first modal desensitizes all current widgets
;	 and subsequent modals only desensitize the modal that called them.
;	JIY, Apr. 1993 Changed modal widget handling process to not run the
;	 event loop for nested modal widgets. Allowed for multiple modal
;	 widgets.
;	AB & SMR, 17 November 1993
;	 Added ID validity checking to desensitizing of modal widgets to
;	 fix a bug where already dead widgets were being accessed.
;	DJE, Feb, 1995
;	 Made it so that non-modal widgets created from a modal widget have

Page 7 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;	 events processed in the modal widget's event loop. This fixes a
;	 bug where xmanager wouldn't return immediately if there was a
;	 modal widget somewhere in the nesting, even though a non-modal
;	 widget was being added. The nesting level could get _very_ deep.
;	DJE, Apr 1995
;	 Pass a local variable to WIDGET_EVENT in the MODAL case, instead
;	 of passing the common block variable modalList. This avoids a bug
;	 where modalList gets changed behind WIDGET_EVENT's back.
;	DJE, Apr 1996
;	 Changes for handling asynchronous widget event dispatching.
;	 Complete rewrite. Background tasks are no longer supported. The
;	 MODAL keyword is now obsolete. Added CATCH and BLOCK keywords.
;	AB, May 1996
;	 Made changes so that XMANAGER always blocks under VMS with the
;	 non-GUI interface. This is due to the fact that the SMG$ system
;	 routines used by IDL in the plain tty case cannot support
;	 interleaving of X events with tty input.
;	AB, 9 January 1997
;	 Changed the meaning of the CATCH keyword so that catching is the
;	 default. Removed BLOCK and replaced with NO_BLOCK. Switched
;	 default action back to blocking from unblocking based on feedback
;	 from the IDL 5 beta. Added the ability to block only as long as a
;	 client without NO_BLOCK is running, and then revert to the active
;	 command line.
;	AB, 10 February 1997
;	 Cleaned up code to make it easier to understand and maintain.
;	 Also cleaned up the distinction between real modality (MODAL
;	 keyword to WIDGET_BASE) and XMANAGER's older fake modality
;	 (MODAL keyword to XMANAGER), and fixed bugs in the current
;	 implementation of fake modality.
;	William Thompson, 25-Nov-1998, GSFC
;	 Changed to allow CDS software to work in IDL/v5.1.1.
;-

PRO XmanagerPrintError
 ; Called when a client error is caught to print the error out for
 ; the user. Unfortunately no stack trace is available, but that's
 ; why XMANAGER,CATCH=0 exists.

 err = !err_string
 syserr = !syserr_string
 printf, -2, format='(A, A)', !ERROR_STATE.MSG_PREFIX, $
'XMANAGER: Caught unexpected error from client application. Message follows...'
 help,/last_message
END

Page 8 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

PRO ValidateManagedWidgets
 ; Makes sure all the widgets in the list of managed widgets are still
 ; valid, and removes those that aren't.

 COMMON managed,	ids, $; IDs of widgets being managed
 			names, $; and their names
			modalList	; list of active modal widgets

 ; initialize the lists
 IF (NOT keyword_set(ids)) THEN BEGIN
 ids = 0L
 names = 0
 ENDIF

 ; if the list is empty, it's valid
 IF (ids[0] EQ 0L) THEN RETURN

 ; which ones are valid?
 valid = where(widget_info(ids, /managed))

 ; build new lists from those that were valid in the old lists
 IF (valid[0] EQ -1) THEN BEGIN
 ids = 0L
 names = 0
 ENDIF ELSE BEGIN
 ids = ids[valid]
 names = names[valid]
 ENDELSE

END

PRO AddManagedWidget, name, id
 ; Adds the given widget with its name to the list of managed widgets
 ;
 ; The list of managed widgets is kept as a convenience for applications
 ; that want to register their functionality by name. For instance, an app
 ; may not want to bring up a particular dialog if there is already one up.
 ; They can find out if the dialog is running by calling the XREGISTERED
 ; routine

 COMMON managed

 ValidateManagedWidgets

Page 9 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 IF (ids[0] EQ 0L) THEN BEGIN
 ; create new lists
 ids = [id]
 names = [name]
 ENDIF ELSE BEGIN
 ; insert at the beginning of the lists
 ids = [id, ids]
 names = [name, names]
 ENDELSE

END

FUNCTION LookupManagedWidget, name
 ; Returns the widget id of the named widget, or 0L if not found

 COMMON managed

 ValidateManagedWidgets

 IF (ids[0] NE 0L) THEN BEGIN
 found = where(names EQ name)
 IF (found[0] NE -1) THEN BEGIN
 RETURN, ids[found[0]]
 ENDIF
 ENDIF

 RETURN, 0L
END

PRO XUNREGISTER, corpse
 ; -- ------
 ; | PLEASE NOTE: This routine is OBSOLETE. It's functionality is |
 ; | is no longer necessary. |
 ; -- ------
 ;
 ;	This procedure used to remove a dead widget from the Xmanagers common
 ;	block, but that information is now maintained internally by IDL.

 COMMON XUNREGISTER_OBSOLETE, obsolete

 IF (NOT keyword_set(obsolete)) THEN BEGIN
 obsolete = 1
 message, /info, 'this routine is obsolete'
 END

Page 10 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ; Might as well validate the list now (even though it would happen later)
 ValidateManagedWidgets

END

PRO XMANAGER_EVLOOP_STANDARD
 ; This is the standard XMANAGER event loop. It works by dispatching
 ; events for all managed widgets until there are none left that require
 ; blocking. In the best case, the command line is able to dispatch events
 ; and there are no clients that require blocking (specified via the
 ; NO_BLOCK keyword to XMANAGER) and we are able to return immediately.

 COMMON xmanager_local, fake_modal_obsolete, xmanager_catch

 ; WARNING: Undocumented feature. See RESTRICTIONS above for details.
 active = widget_info(/XMANAGER_BLOCK)
 WHILE (active NE 0) DO BEGIN
 err = 0
 IF (xmanager_catch) THEN catch, err
 IF (err EQ 0) THEN BEGIN
 ; WARNING: Undocumented feature. See RESTRICTIONS above for details.
 tmp = widget_event(/XMANAGER_BLOCK)
 ENDIF ELSE XmanagerPrintError
 IF (xmanager_catch) THEN catch, /cancel
 ; WARNING: Undocumented feature. See RESTRICTIONS above for details.
 active = widget_info(/XMANAGER_BLOCK)
 ENDWHILE

END

PRO XMANAGER_EVLOOP_REAL_MODAL, modal_id
 ; This version of the XMANAGER event loop is used when a client with
 ; the MODAL keyword set on its TLB has been passed in. It dispatches
 ; events for that client until it is done. Events for other clients
 ; are also flushed at critical points so that expose events are not
 ; delayed unnecessarily.

 COMMON xmanager_local

Page 11 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 active = 1
 WHILE (active NE 0) DO BEGIN
 err = 0
 IF (xmanager_catch) THEN catch, err
 IF (err EQ 0) THEN BEGIN
 ; WARNING: Undocumented feature. See RESTRICTIONS above for details.
 tmp = widget_event(MODAL_ID, bad_id=bad, /BREAK_ON_EXPOSE)
 ENDIF ELSE XmanagerPrintError
 IF (xmanager_catch) THEN catch, /cancel
 active = widget_info(MODAL_ID, /managed)

 ; Modal event handling returned. Flush events for other widgets
 ; so we do not keep expose events (among others) blocked.
 IF (active) THEN BEGIN
 err = 0
 IF (xmanager_catch) THEN catch, err
 IF (err EQ 0) THEN BEGIN
 tmp = widget_event(/NOWAIT)
 ENDIF ELSE XmanagerPrintError
 IF (xmanager_catch) THEN catch, /cancel
 ENDIF
 ENDWHILE
END

PRO XMANAGER_EVLOOP_FAKE_MODAL, ID
 ; This version of the XMANAGER event loop is used when a client is
 ; registered with the MODAL keyword to XMANAGER. It fakes the appearance
 ; of real modality by making the other existing clients insensitive while
 ; the modal widget exists.

 COMMON managed
 COMMON xmanager_local

 ; Remember the current modal list so it can be restored afterwards
 oldModalList = modalList
 modalList = [ID]
 ; WARNING: Undocumented feature. See RESTRICTIONS above for details.
;
; This line was commented out, as advised by RSI.
;
; WIDGET_CONTROL, ID, /MODAL

 ; Get list of clients that should be desensitized to mimic modality.
 ; If this is the outermost modal, then the list of all currently
 ; managed widgets is used. If this is a nested inner modal, then

Page 12 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ; use the oldModalList.
 IF (keyword_set(oldModalList)) THEN BEGIN
 senslist = oldModalList
 ENDIF ELSE BEGIN
 WIDGET_CONTROL, ID, managed=0 ; So won't show up in following statement
 senslist = WIDGET_INFO(/MANAGED)
 WIDGET_CONTROL, ID, /MANAGED ; Put it back
 ENDELSE
 for i = 0, n_elements(senslist) - 1 do $
 WIDGET_CONTROL, BAD_ID=ignore_bad, senslist[i], SENSITIVE=0

 ; Process events only for clients in the modal list. This list may gain
 ; members if event processing leads to other applications being registered
 ; via a recursive call to XMANAGER.
 tmp = where(widget_info(modalList, /managed), active)
 WHILE (active NE 0) DO BEGIN
 err = 0
 IF (xmanager_catch) THEN catch, err
 tmp = modalList
 IF (err EQ 0) THEN BEGIN
 ; WARNING: Undocumented feature. See RESTRICTIONS above for details.
 tmp = widget_event(tmp, bad_id=bad, /BREAK_ON_EXPOSE)
 ENDIF ELSE XmanagerPrintError
 IF (xmanager_catch) THEN catch, /cancel
 tmp = where(widget_info(modalList, /managed), active)
 IF (active NE 0) THEN modalList = modalList[tmp]
 ;
 ; Modal event handling returned, flush events for other widgets
 ; if any so we do not keep expose events etc. blocked
 ;
 IF (active) THEN BEGIN
 err = 0
 IF (xmanager_catch) THEN catch, err
 IF (err EQ 0) THEN BEGIN
 tmp = widget_event(/NOWAIT)
 ENDIF ELSE XmanagerPrintError
 IF (xmanager_catch) THEN catch, /cancel
 ENDIF
 ENDWHILE

 for i = 0, n_elements(senslist) - 1 do $
 WIDGET_CONTROL, BAD_ID=ignore_bad, senslist[i], /SENSITIVE

 ; restore the outer XMANAGER's list of modal widgets
 modalList = oldModalList

END

Page 13 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

PRO XMANAGER,	NAME, ID, BACKGROUND = background, CATCH = catch, $
		CLEANUP = cleanup, EVENT_HANDLER = event_handler, $
		GROUP_LEADER = group_leader, JUST_REG = just_reg, $
		MODAL = modal, NO_BLOCK = no_block

 COMMON managed
 COMMON xmanager_local

 isFakeModal = keyword_set(modal)

 ; print out obsolete keyword messages
 IF (keyword_set(background)) THEN BEGIN
 message, "The BACKGROUND keyword to the XMANAGER procedure is " + $
	 "obsolete. It is superseded by the TIMER keyword to " + $
	 "the WIDGET_CONTROL procedure.", /info
 ENDIF
 IF (isFakeModal AND (NOT keyword_set(fake_modal_obsolete))) THEN BEGIN
 fake_modal_obsolete = 1
 message, "The MODAL keyword to the XMANAGER procedure is " + $
	 "obsolete. It is superseded by the MODAL keyword to " + $
	 "the WIDGET_BASE function.", /info
 ENDIF

 ; Initialization
 if (n_elements(catch) ne 0) THEN BEGIN
 xmanager_catch = catch ne 0
 message, /INFO, 'Error handling is now ' + (['off', 'on'])[xmanager_catch]
 return
 ENDIF ELSE if (n_elements(xmanager_catch) EQ 0) then xmanager_catch = 1;
 isRealModal = 0
 if (N_ELEMENTS(just_reg) eq 0) then just_reg = 0
 IF (isFakeModal) THEN just_reg = 0;
 IF (NOT keyword_set(modalList)) THEN modalList = 0
 ValidateManagedWidgets

 ; Argument setup
 if (N_PARAMS() EQ 0) THEN BEGIN
 IF (ids[0] EQ 0L) THEN BEGIN
 message, 'No widgets are currently being managed.', /info
 RETURN

Page 14 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ENDIF
 ENDIF ELSE IF (N_PARAMS() NE 2) THEN BEGIN
 message, 'Wrong number of arguments, usage: XMANAGER [, name, id]'
 ENDIF ELSE BEGIN	;2 argument case

 ; Check the arguments
 IF (NOT widget_info(id, /valid)) THEN message, 'Invalid widget ID.'
 nameinfo = size(name)
 IF ((nameinfo[0] NE 0) OR (nameinfo[1] NE 7)) THEN $
 message, 'Invalid widget name.'

 ; If TLB is modal, block in XMANAGER till you are done
 IF (widget_info(id, /Modal)) THEN isRealModal = 1

 IF (keyword_set(cleanup)) THEN widget_control, id, kill_notify=cleanup
 IF (NOT keyword_set(event_handler)) THEN event_handler = name + '_event'

 ; Register new widget
 AddManagedWidget, name, id

 ; Mark the widget for event processing
 widget_control, id, /managed, event_pro=event_handler

 ; Unless the caller set NO_BLOCK to indicate otherwise, mark
 ; this client as requiring XMANAGER to block. This decision is driven
 ; by backward compatibility concerns. During the IDL 5.0 beta we discovered
 ; that many customers have code that depends on the blocking behavior.
 ;
 ; WARNING: Undocumented feature. See RESTRICTIONS above for details.
 if keyword_set(no_block) then WIDGET_CONTROL, /XMANAGER_ACTIVE_COMMAND, id

 ; pass the group_leader keyword through
 IF (keyword_set(group_leader)) THEN $
 widget_control, id, group_leader=group_leader

 ; Modal Widget Registration
 IF (keyword_set(modalList) and (not isFakeModal)) THEN BEGIN

 ; This client is a non-modal widget, being started while a
 ; fake modal is already up. Just add the new widget to the modal
 ; list and return immediately. The fake modal event loop will
 ; dispatch its events as well as the modal clients.
 modalList = [modalList, ID]
 just_reg = 1	; Don't process events. Instead, return immediately

Page 15 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ; need to break out of the outer widget_event call so that the
 ; outer xmanager can see that outmodal has changed
 ; WARNING: Undocumented feature. See RESTRICTIONS above for details.
 widget_control, /event_break

 ENDIF 		; modal

 ENDELSE		; 2 argument case

 ; Event Processing.
 IF (NOT just_reg) THEN BEGIN
 IF (isRealModal) THEN BEGIN
 XMANAGER_EVLOOP_REAL_MODAL, ID
 ENDIF ELSE IF isFakeModal THEN BEGIN
 XMANAGER_EVLOOP_FAKE_MODAL, ID
 ENDIF ELSE BEGIN
 XMANAGER_EVLOOP_STANDARD
 ENDELSE

 ; keep our list clean and up to date
 ValidateManagedWidgets

 ENDIF

END

Page 16 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

