Subject: Re: Slicer3 followup
Posted by thompson on Wed, 20 Jan 1999 08:00:00 GMT

View Forum Message <> Reply to Message

Bob Yantosca <bmy@io.harvard.edu> writes:

> | am running IDL 5.1 on the SGI-Origin platform, and have noticed a couple
> of things about the library routine "slicer3.pro"

> (1) slicer3.pro contains the following call to XMANAGER with the /MODAL
> keyword:

> XMANAGER, 'Slicer3', wMainBase, EVENT_HANDLER='Viz3D_Event', $
> /MODAL, CLEANUP="Viz3D_KillMain'

> However, in IDL 5.1, the /IMODAL keyword in XMANAGER has been superseded by
> a call to /MODAL in WIDGET_BASE. Am not sure what side effects this will
> cause, but at some point perhaps RSI should tidy this up.

| hope that the way RSI tidies this up is to change their mind and decide that

IMODAL in XMANAGER isn't obsolete after all. As discussed previously in this
newsgroup, the newly recommended way of using /MODAL in WIDGET_BASE does not
provide some crucially important functionality that has always been available

with XMANAGER.

| don't think your problem is caused by the /MODAL keyword, but RSI did give me
some directions as to how to fix xmanager.pro in IDL/v5.1 and /v5.2. The fixed
version is below. See if this solves your problems.

William Thompson

; $ld: xmanager.pro,v 1.42 1998/01/21 22:09:16 lubos Exp $

; Copyright (c) 1991-1998, Research Systems, Inc. All rights reserved.
; Unauthorized reproduction prohibited.

+

; NAME:

; XMANAGER

; PURPOSE:
; Provide management for widgets client applications created using IDL.

; CATEGORY:

Page 1 of 16 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=35
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8961&goto=14127#msg_14127
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=14127
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; Widgets.

- CALLING SEQUENCE:
- XMANAGER [, Name, ID]

; OPTIONAL INPUTS:
; NAME: A string giving the name of the application that is being
; registered.

; ID: The widget ID of the top level base of the new client.

; KEYWORD PARAMETERS:
: BACKGROUND:

; | PLEASE NOTE: This keyword is OBSOLETE. It's functionality |

. | is provided by the TIMER keyword to the WIDGET_CONTROL |
;| procedure. |

; CATCH: If TRUE, tells XMANAGER to use CATCH when dispatching
; widget events. If FALSE, CATCH is not used and execution

; halts on error. The default is TRUE. If CATCH is specified,

; the internal state of XMANAGER is updated and it returns

; immediately without taking any further action. CATCH

. is only effective if XMANAGER is blocking to dispatch

; errors. If active command line event dispatching is in

; use, it has no effect.

; CLEANUP: This keyword contains a string that is the name of the
; routine called when the widget dies. If not specified,

; no routine is called. The cleanup routine must accept one

; parameter which is the widget id of the dying widget. This

; routine is set as the KILL_NOTIFY routine for the widget.

; EVENT_HANDLER: The name of the event handling routine that is to be
; called when a widget event occurs in the registered

; application. If this keyword is not supplied, the Xmanager

; will construct a default name by adding the " EVENT" suffix

; to the NAME argument. See below for a more detailed

; explanation.

; GROUP_LEADER: The widget id of the group leader for the application
; being registered. When the leader dies, all widgets that have

. that leader will also die.

; For example, a widget that views a help file for a demo

; widget would have that demo widget as it's leader. When

; the help widget is registered, it sets the keyword

Page 2 of 16 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; GROUP_LEADER to the widget id of the demo widget. If
; the demo widget is destroyed, the help widget led by
; the it would be killed by the XMANAGER.

; JUST_REG:

; This keyword tells the manager to just register the widget

; but not to start doing the event processing. This is useful

; when you want to register a group of related top level widgets
; but need to regain control immediately afterwards.

; NOTE: JUST_REG does not do the same thing as NO_BLOCK. This is
; explained in detail below under "SIDE EFFECTS".

; | PLEASE NOTE: This keyword is OBSOLETE. It's functionality |
; | is provided by the MODAL keyword to the WIDGET_BASE |
;| procedure. |

: When this keyword is set, the widget that is being registered
; traps all events and desensitizes all the other widgets. It

; Is useful when input from the user is necessary before

; continuing. Once the modal widget dies, the others are

; resensitized and the normal event processing is restored.

; XMANAGER is therefore using sensitivity to provide the

; illusion of modality. The WIDGET_BASE keyword is a newer
; IDL feature that provides the real thing.

; NO_BLOCK: If set, tells XMANAGER that the registering client

; does not require XMANAGER to block if active command line

; event processing is available. If active command line

; event processing is available *AND* every current XMANAGER
; client specifies NO_BLOCK, then XMANAGER will not block

; and the user will have access to the command line while

; widget applications are running.

; NOTE: NO_BLOCK does not do the same thing as JUST_REG. This is
; explained in detail below under "SIDE EFFECTS".

; OUTPUTS:
; No outputs.

: COMMON BLOCKS:

: MANAGED

; XMANAGER_LOCAL:

; Common blocks used for module state maintenance. These common
; blocks are considered private to this module and should not

Page 3 of 16 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

be referenced outside RSI supplied routines. They are

; subject to change without notice.

SIDE EFFECTS:

JUST_REG vs NO_BLOCK
Although their names imply a similar function, the JUST_REG and
NO_BLOCK keywords perform very different services. It is important
to understand what they do and how they differ.

JUST_REG tells XMANAGER that it should simply register a client
and then return immediately. The result is that the client becomes
known to XMANAGER, and that future calls to XMANAGER will take this
client into account. Therefore, JUST_REG only controls how the
registering call to XMANAGER should behave. The registered client
can still be registered as requiring XMANAGER to block by not setting
NO_BLOCK. In this case, future calls to XMANAGER will block.

NO_BLOCK tells XMANAGER that the registered client does not
require XMANAGER to block if the command processing front end

Is able to support active command line event processing (described
below). XMANAGER remembers this attribute of the client until

the client exits, even after the call to XMANAGER that registered the
client returns. NO_BLOCK is just a "vote" on how XMANAGER should
behave. The final decision is made by XMANAGER by considering the
NO_BLOCK attributes of all of its current clients as well as the

ability of the command front end in use to support the active command
line.

Blocking vs Non-blocking
The issue of blocking in XMANAGER requires some explanation.
IDL places incoming widget events into a queue of pending events.
The only way to get these events processed and dispatched is to
call the WIDGET_EVENT function. Arranging for WIDGET_EVENT to be
called properly is the primary job of XMANAGER. XMANAGER offers
two different modes of operation:

- The first (outermost) XMANAGER processes events by calling
WIDGET_EVENT as necessary until no managed clients remain on
the screen. This is referred to as "blocking”, because XMANAGER
does not return to the caller until it is done, and the IDL
command line is not available.

- XMANAGER does not block, and instead, the part of IDL
that reads command input also watches for widget events

Page 4 of 16 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; and calls WIDGET_EVENT as necessary while also reading
; command input. This is referred to as "non-blocking" or
; "active command line" mode.

; The default is to block. However, if every currently active

; application specified the NO_BLOCK keyword to XMANAGER, non-blocking
; mode is used, if possible.

; There are currently 5 separate IDL command input front end

; implementations:

; - Apple Macintosh IDE

: - Microsoft Windows IDE

; - Motif IDE (Unix and VMS)

; - Unix plain tty

; - VMS plain tty

; Except for the VMS plain tty, all of these front ends are able to

; support the non-blocking active command line. VMS users can have

; an active command line by using the IDLde interface. The decision

; on whether XMANAGER blocks to process widget events is determined
; by the following rules, in order of precedence:

;- Use of the MODAL keyword will cause XMANAGER to block.

;- Setting JUST_REG to 1 ensures that XMANAGER will not block.
;- If using the VMS plain tty interface, XMANAGER will block.

;- If none of the previous rules apply, XMANAGER will block

; if any of its currently active clients were registered without

; specifying NO_BLOCK. If NO_BLOCK is specified for every client,
: XMANAGER will not block and will instead return and allow

; active command line processing to take place.

; When possible, applications should set the NO_BLOCK keyword.
; This allows the IDL command line to be active while events are
; being processed, which is highly desirable.

; RESTRICTIONS:

; The implementation of XMANAGER may change in the future. Details
; of its internal implementation must not be relied upon --- only

; its external definition can be considered stable.

; XMANAGER uses several undocumented features provided by the

; internal WIDGET routines. These features are private to RSI, and

; are not guaranteed to remain in IDL or to remain unchanged. They

; exist only to support XMANAGER and should not be used elsewhere:

; WIDGET_CONTROL, /XMANAGER_ACTIVE_COMMAND

Page 5 of 16 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; WIDGET_CONTROL, /MODAL

; WIDGET_EVENT, /BREAK _ON_EXPOSE

; WIDGET_EVENT, /EVENT_BREAK

; WIDGET_EVENT, /XMANAGER_BLOCK

; WIDGET_INFO, /XMANAGER_BLOCK

; These features are undocumented because they are not considered
; permanent. Research Systems reserves the right to remove or alter
; these features at any time.

; EXAMPLE USE:
; To create a widget named Example that is just a base widget with a done
; button using the XMANAGER you would do the following:

;. PRO example_event, ev ;this is the routine that

; ;deals with the events in the

;;example widget.

; WIDGET_CONTROL, ev.id, GET_UVALUE = uv ;the uservalue is retrieved
; ;from the widget where the

; ;event occurred

. if(uv eq 'DONE") then $;if the event occurred in the

; WIDGET_CONTROL, ev.top, /DESTROY ;done button then kill the
; END ;widget example

- second - the main routine ------ ;

; PRO example ;this is the main routine

; ;that builds the widget and

; ;registers it with the Xmanager

; base = WIDGET_BASE(TITLE = 'Example’) ;first the base is created

; done = WIDGET_BUTTON(base, $;next the done button is
: TITLE = 'DONE’, $;created and it's user value
: UVALUE = 'DONE) ;set to "DONE"

; WIDGET_CONTROL, base, /REALIZE ;the widget is realized
; XManager, 'example’, base ;finally the example widget

; is registered with the

;s Xmanager

. END

Page 6 of 16 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; notes: First the event handler routine is listed. The handler

; routine has the same name as the main routine with the

; characters "_event" added. If you would like to use another

; event handler name, you would need to pass it's name in as

; a string to the EVENT_HANDLER keyword. Also notice that the
; event routine is listed before the main routine. This is

; because the compiler will not compile the event routine if

it was below the main routine. This is only needed if both
routines reside in the same file and the file name is the same

as the main routine name with the ".pro" extension added.

; PROCEDURE:

: When the first widget is registered, initialize the lists and then

; start processing events. Continue registering widgets and dispatching
; events until all the widgets have been destroyed. When a widget is

; killed, destroy all widgets that list the destroyed widget as their

; leader, if any.

; RELATED FUNCTIONS AND PROCEDURES:
; XREGISTERED, XMTOOL

; MODIFICATION HISTORY: Written by Steve Richards, November, 1990

; SMR, Mar, 1991 Added a cleanup routine keyword to allow dying

; widgets to clean themselves up when dying.

; SMR, May, 1991 Fixed a bug found by Diane Parchomchuk where an error
; occurred when registering a widget ight after destroying another.

; SMR & ACY, July, 1991

; Fixed a bug found by Debra Wolkovitch where lone widgets being

; destroyed and new ones created caused problems.

: SMR, Sept, 1991 Changed cleanup to use the new WIDGET _INFO routine.
; SMR & ACY, Oct, 1991

; Fixed a bug where a background event that unregistered itself

; after a time would result in an XMANAGER error.

; SMR, Mar. 1992 Changed XMANAGER to use enhanced widget functions for
; event processing.

: SMR, Nov. 1992 Changed modal widget handling allowing nesting of

; modal widgets. The first modal desensitizes all current widgets

; and subsequent modals only desensitize the modal that called them.

; JIY, Apr. 1993 Changed modal widget handling process to not run the

; event loop for nested modal widgets. Allowed for multiple modal

; widgets.

: AB & SMR, 17 November 1993

; Added ID validity checking to desensitizing of modal widgets to

; fix a bug where already dead widgets were being accessed.

; DJE, Feb, 1995

Made it so that non-modal widgets created from a modal widget have

Page 7 of 16 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; events processed in the modal widget's event loop. This fixes a

: bug where xmanager wouldn't return immediately if there was a

; modal widget somewhere in the nesting, even though a non-modal

; widget was being added. The nesting level could get very deep.

; DJE, Apr 1995

; Pass a local variable to WIDGET_EVENT in the MODAL case, instead
; of passing the common block variable modalList. This avoids a bug

; where modalList gets changed behind WIDGET_EVENT's back.

; DJE, Apr 1996

; Changes for handling asynchronous widget event dispatching.

; Complete rewrite. Background tasks are no longer supported. The

; MODAL keyword is now obsolete. Added CATCH and BLOCK keywords.
; AB, May 1996

; Made changes so that XMANAGER always blocks under VMS with the
; non-GUI interface. This is due to the fact that the SMG$ system

; routines used by IDL in the plain tty case cannot support

;. interleaving of X events with tty input.

; AB, 9 January 1997

; Changed the meaning of the CATCH keyword so that catching is the
; default. Removed BLOCK and replaced with NO_BLOCK. Switched
; default action back to blocking from unblocking based on feedback

; from the IDL 5 beta. Added the ability to block only as long as a

; client without NO_BLOCK is running, and then revert to the active

; command line.

; AB, 10 February 1997

; Cleaned up code to make it easier to understand and maintain.

; Also cleaned up the distinction between real modality (MODAL

; keyword to WIDGET_BASE) and XMANAGER's older fake modality
; (MODAL keyword to XMANAGER), and fixed bugs in the current

; implementation of fake modality.

; William Thompson, 25-Nov-1998, GSFC

; Changed to allow CDS software to work in IDL/v5.1.1.

PRO XmanagerPrintError
; Called when a client error is caught to print the error out for
; the user. Unfortunately no stack trace is available, but that's
; why XMANAGER,CATCH=0 exists.

err = lerr_string
syserr = Isyserr_string
printf, -2, format="(A, A)', 'ERROR_STATE.MSG_PREFIX, $
'XMANAGER: Caught unexpected error from client application. Message follows...'
help,/last_message
END

Page 8 of 16 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

PRO ValidateManagedWidgets
; Makes sure all the widgets in the list of managed widgets are still
; valid, and removes those that aren't.

COMMON managed, ids, $; IDs of widgets being managed
names, $; and their names
modalList ; list of active modal widgets

: initialize the lists

IF (NOT keyword_set(ids)) THEN BEGIN
ids = OL
names =0

ENDIF

; if the list is empty, it's valid
IF (ids[0] EQ OL) THEN RETURN

; which ones are valid?
valid = where(widget_info(ids, /managed))

: build new lists from those that were valid in the old lists
IF (valid[0] EQ -1) THEN BEGIN
ids = OL
names =0
ENDIF ELSE BEGIN
ids = ids[valid]
names = names|valid]
ENDELSE

END

PRO AddManagedWidget, name, id
; Adds the given widget with its name to the list of managed widgets

; The list of managed widgets is kept as a convenience for applications

; that want to register their functionality by name. For instance, an app

; may not want to bring up a particular dialog if there is already one up.

; They can find out if the dialog is running by calling the XREGISTERED
; routine

COMMON managed

ValidateManagedWidgets

Page 9 of 16 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IF (ids[0] EQ OL) THEN BEGIN
; create new lists
ids =[id]
names = [name |
ENDIF ELSE BEGIN
; insert at the beginning of the lists
ids =[id, ids]
names = [name, names |
ENDELSE

END

FUNCTION LookupManagedWidget, name
; Returns the widget id of the named widget, or OL if not found

COMMON managed
ValidateManagedWidgets

IF (ids[O] NE OL) THEN BEGIN
found = where(hames EQ name)
IF (found[O] NE -1) THEN BEGIN

RETURN, ids[found[0]]
ENDIF
ENDIF

RETURN, OL
END

PRO XUNREGISTER, corpse

; | PLEASE NOTE: This routine is OBSOLETE. It's functionality is |
; | iIs no longer necessary. |

; This procedure used to remove a dead widget from the Xmanagers common
; block, but that information is now maintained internally by IDL.

COMMON XUNREGISTER_OBSOLETE, obsolete

IF (NOT keyword_set(obsolete)) THEN BEGIN

obsolete = 1
message, /info, 'this routine is obsolete’
END

Page 10 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; Might as well validate the list now (even though it would happen later)
ValidateManagedWidgets

END

PRO XMANAGER_EVLOOP_STANDARD
; This is the standard XMANAGER event loop. It works by dispatching
; events for all managed widgets until there are none left that require
; blocking. In the best case, the command line is able to dispatch events
; and there are no clients that require blocking (specified via the
; NO_BLOCK keyword to XMANAGER) and we are able to return immediately.

COMMON xmanager _local, fake_modal_obsolete, xmanager_catch

: WARNING: Undocumented feature. See RESTRICTIONS above for details.
active = widget_info(/XMANAGER_BLOCK)
WHILE (active NE 0) DO BEGIN
err=0
IF (xmanager_catch) THEN catch, err
IF (err EQ 0) THEN BEGIN
: WARNING: Undocumented feature. See RESTRICTIONS above for details.
tmp = widget_event(/XMANAGER_BLOCK)
ENDIF ELSE XmanagerPrintError
IF (xmanager_catch) THEN catch, /cancel
: WARNING: Undocumented feature. See RESTRICTIONS above for details.
active = widget_info((XMANAGER_BLOCK)
ENDWHILE

END

PRO XMANAGER_EVLOOP_REAL_MODAL, modal_id
; This version of the XMANAGER event loop is used when a client with
; the MODAL keyword set on its TLB has been passed in. It dispatches
; events for that client until it is done. Events for other clients
; are also flushed at critical points so that expose events are not
; delayed unnecessarily.

COMMON xmanager_local

Page 11 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

active =1
WHILE (active NE 0) DO BEGIN
err=0
IF (xmanager_catch) THEN catch, err
IF (err EQ 0) THEN BEGIN
; WARNING: Undocumented feature. See RESTRICTIONS above for details.
tmp = widget_event(MODAL_ID, bad_id=bad, /BREAK_ON_EXPOSE)
ENDIF ELSE XmanagerPrintError
IF (xmanager_catch) THEN catch, /cancel
active = widget_info(MODAL_ID, /managed)

; Modal event handling returned. Flush events for other widgets
; SO we do not keep expose events (among others) blocked.
IF (active) THEN BEGIN
err=0
IF (xmanager_catch) THEN catch, err
IF (err EQ 0) THEN BEGIN
tmp = widget_event(/NOWAIT)
ENDIF ELSE XmanagerPrintError
IF (xmanager_catch) THEN catch, /cancel
ENDIF
ENDWHILE
END

PRO XMANAGER_EVLOOP_FAKE_MODAL, ID
; This version of the XMANAGER event loop is used when a client is
; registered with the MODAL keyword to XMANAGER. It fakes the appearance
; of real modality by making the other existing clients insensitive while
; the modal widget exists.

COMMON managed
COMMON xmanager_local

: Remember the current modal list so it can be restored afterwards
oldModalList = modalList

modalList =[ID]

: WARNING: Undocumented feature. See RESTRICTIONS above for details.

; This line was commented out, as advised by RSI.
; WIDGET_CONTROL, ID, /MODAL
; Get list of clients that should be desensitized to mimic modality.

; If this is the outermost modal, then the list of all currently
; managed widgets is used. If this is a nested inner modal, then

Page 12 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; use the oldModalList.
IF (keyword_set(oldModalList)) THEN BEGIN
senslist = oldModalList
ENDIF ELSE BEGIN
WIDGET_CONTROL, ID, managed=0 ; So won't show up in following statement
senslist = WIDGET_INFO(/MANAGED)
WIDGET_CONTROL, ID, /MANAGED ; Put it back
ENDELSE
fori=0, n_elements(senslist) - 1 do $
WIDGET_CONTROL, BAD_ID=ignore_bad, senslist[i], SENSITIVE=0

; Process events only for clients in the modal list. This list may gain
; members if event processing leads to other applications being registered
; via a recursive call to XMANAGER.
tmp = where(widget_info(modalList, /managed), active)
WHILE (active NE 0) DO BEGIN
err=0
IF (xmanager_catch) THEN catch, err
tmp = modalList
IF (err EQ 0) THEN BEGIN
; WARNING: Undocumented feature. See RESTRICTIONS above for details.
tmp = widget_event(tmp, bad_id=bad, /BREAK_ON_EXPOSE)
ENDIF ELSE XmanagerPrintError
IF (xmanager_catch) THEN catch, /cancel
tmp = where(widget_info(modalList, /managed), active)
IF (active NE 0) THEN modalList = modalList[tmp]

; Modal event handling returned, flush events for other widgets
; if any so we do not keep expose events etc. blocked

IF (active) THEN BEGIN
err=0
IF (xmanager_catch) THEN catch, err
IF (err EQ 0) THEN BEGIN
tmp = widget_event(/NOWAIT)
ENDIF ELSE XmanagerPrintError
IF (xmanager_catch) THEN catch, /cancel
ENDIF
ENDWHILE

fori=0, n_elements(senslist) - 1 do $
WIDGET_CONTROL, BAD_ID=ignore_bad, senslist[i], /'SENSITIVE

; restore the outer XMANAGER's list of modal widgets
modalList = oldModalList

END

Page 13 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

PRO XMANAGER, NAME, ID, BACKGROUND = background, CATCH = catch, $
CLEANUP = cleanup, EVENT_HANDLER = event_handler, $
GROUP_LEADER = group_leader, JUST_REG = just_reg, $
MODAL = modal, NO_BLOCK = no_block

COMMON managed
COMMON xmanager_local

isFakeModal = keyword_set(modal)

; print out obsolete keyword messages
IF (keyword_set(background)) THEN BEGIN
message, "The BACKGROUND keyword to the XMANAGER procedure is " + $
"obsolete. It is superseded by the TIMER keyword to " + $
"the WIDGET_CONTROL procedure.", /info
ENDIF
IF (isFakeModal AND (NOT keyword_set(fake_modal_obsolete))) THEN BEGIN
fake _modal_obsolete = 1
message, "The MODAL keyword to the XMANAGER procedure is " + $
"obsolete. It is superseded by the MODAL keyword to " + $
"the WIDGET_BASE function.", /info
ENDIF

: Initialization
if (n_elements(catch) ne 0) THEN BEGIN
xmanager_catch = catch ne 0
message, /INFO, 'Error handling is now ' + (['off', 'on’])[xmanager_catch]
return
ENDIF ELSE if (n_elements(xmanager_catch) EQ 0) then xmanager_catch = 1;
isRealModal =0
if (N_ELEMENTS(just_reg) eq 0) then just_reg =0
IF (isFakeModal) THEN just_reg = 0;
IF (NOT keyword_set(modalList)) THEN modalList =0
ValidateManagedWidgets

; Argument setup
if (N_PARAMS() EQ 0) THEN BEGIN
IF (ids[0] EQ OL) THEN BEGIN
message, 'No widgets are currently being managed.', /info
RETURN

Page 14 of 16 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

ENDIF
ENDIF ELSE IF (N_PARAMS() NE 2) THEN BEGIN

message, 'Wrong number of arguments, usage: XMANAGER [, name, id]'
ENDIF ELSE BEGIN ;2 argument case

; Check the arguments
IF (NOT widget_info(id, /valid)) THEN message, 'Invalid widget ID.’
nameinfo = size(hame)
IF ((nameinfo[0] NE 0) OR (nameinfo[1] NE 7)) THEN $
message, 'Invalid widget name.’

; If TLB is modal, block in XMANAGER till you are done
IF (widget_info(id, /Modal)) THEN isRealModal = 1

IF (keyword_set(cleanup)) THEN widget_control, id, kill_notify=cleanup

IF (NOT keyword_set(event_handler)) THEN event_handler = name +'_event'
; Register new widget

AddManagedWidget, name, id

; Mark the widget for event processing
widget_control, id, /managed, event_pro=event_handler

; Unless the caller set NO_BLOCK to indicate otherwise, mark

; this client as requiring XMANAGER to block. This decision is driven

; by backward compatibility concerns. During the IDL 5.0 beta we discovered
; that many customers have code that depends on the blocking behavior.

: WARNING: Undocumented feature. See RESTRICTIONS above for details.
if keyword_set(no_block) then WIDGET_CONTROL, /XMANAGER_ACTIVE_COMMAND, id

; pass the group_leader keyword through
IF (keyword_set(group_leader)) THEN $
widget_control, id, group_leader=group_leader

; Modal Widget Registration
IF (keyword_set(modalList) and (not isFakeModal)) THEN BEGIN

; This client is a non-modal widget, being started while a

; fake modal is already up. Just add the new widget to the modal
; list and return immediately. The fake modal event loop will

; dispatch its events as well as the modal clients.

modalList = [modalList, ID]

just_reg = 1; Don't process events. Instead, return immediately

Page 15 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; heed to break out of the outer widget_event call so that the

; outer xmanager can see that outmodal has changed

; WARNING: Undocumented feature. See RESTRICTIONS above for detalils.
widget_control, /event_break

ENDIF : modal

ENDELSE ; 2 argument case

; Event Processing.
IF (NOT just_reg) THEN BEGIN
IF (isRealModal) THEN BEGIN
XMANAGER_EVLOOP_REAL_MODAL, ID
ENDIF ELSE IF isFakeModal THEN BEGIN
XMANAGER_EVLOOP_FAKE_MODAL, ID
ENDIF ELSE BEGIN
XMANAGER_EVLOOP_STANDARD
ENDELSE

; keep our list clean and up to date
ValidateManagedWidgets

ENDIF

END

Page 16 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

