
Subject: Re: Bug/feature in matrix multiply
Posted by Mark Fardal on Sun, 14 Mar 1999 08:00:00 GMT
View Forum Message <> Reply to Message

Hi,

> Hint:
>
> junk=reform(junk,3,1)
> help,junk,double(junk)
>
> 8-)

Stein is quite right. The problem occurs because converting junk to
double removes the trailing dimension.

So my question becomes, why does this happen? If IDL is going to
treat an 3x1 array differently than a 3-element vector, it shouldn't
just cavalierly remove the trailing dimension in my opinion. The
behavior is probably documented somewhere but I couldn't find it in
the hyperhelp. There is this one sentence in "Combining Array
Subscripts with Others": "As with other subscript operations, trailing
degenerate dimensions (those with a size of 1) are eliminated."

I also notice that the behavior is somewhat inconsistent, in that
converting an expression to one of the same type does _not_ remove
the trailing dimension:

IDL> junk=intarr(3)
IDL> junk=reform(junk,3,1)
IDL> help,junk
JUNK INT = Array[3, 1]
IDL> help,junk,float(junk),fix(junk),double(junk)
JUNK INT = Array[3, 1]
<Expression> FLOAT = Array[3]
JUNK INT = Array[3, 1]
<Expression> DOUBLE = Array[3]

Also, conversion of an array of length 1 does not produce a scalar.
It seems like this would be the analogous behavior.

The initial problem I had may clarify why this is important. I was
trying to do a nonlinear, 1-parameter fit, and chose to use CURVEFIT.
This is clearly killing a fly with a machine gun, but hey, the machine
gun was close at hand. Also, the code for CURVEFIT does indicate some
thought about the 1-parameter case, i.e.

 IF nterms EQ 1 THEN pder = reform(pder, n_elements(y), 1)

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1237
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9214&goto=14667#msg_14667
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=14667
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

(Does this line answer your question David?) I used single precision
for most variables, but returned the fitting function as a double
array. This caused CURVEFIT to crash. Here's a simple program that
demonstrates the same behavior:

pro expdecay, x, rate, yfit

yfit = exp(-rate(0) * x)
yfit = double(yfit)

return
end

pro testcurvefit

x = [0., 1., 2.]
y = exp(-x)
params=[1.1]
weights = x*0 + 1.
fit = curvefit(x, y, weights, params, function_name='expdecay', /noderivative)

print, 'Rate constant:', params(0)

end

When running this routine I get

IDL> testcurvefit
% Operands of matrix multiply have incompatible dimensions: <FLOAT
 Array[1]>, <DOUBLE Array[3, 3]>.
% Error occurred at: CURVEFIT 279
 /usr/local/rsi/idl/lib/curvefit.pro

This happens because in the statement
 beta = (y-yfit)*Weights # pder
pder is a floating 3x1 array, since the parameter "a" (= params) was a
float. It is getting multiplied by ((y-yfit)*Weights) which is a
double, so pder get promoted to double and loses its trailing
dimension in the process. Then beta winds up as the #-product of two
3-element vectors, or a 3x3 array. It should be a 1x1 array.

I believe this demonstrates a bug in either CURVEFIT or in type
conversion in general. My vote is for the latter. A workaround to
using CURVEFIT is to make all parameters the same type.

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Mark Fardal
UMass

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

