Subject: Re: working with very large data sets
Posted by David Foster on Thu, 25 Mar 1999 08:00:00 GMT

View Forum Message <> Reply to Message

Steve Carothers wrote:

| am working with 71 Mb data file on UNIX server that has 256 Mb RAM and 500
Mb of virtual memory. I'm not doing much data manipulation before I plot
the data, but it doesn't take much manipulation to exceed the memory
allocation. | understand the benefits of chunking up the data, but | would
really like to keep all the data together for plotting purposes. | think my
PV-Wave script could run properly if | can figure out how to minimize or
eliminate memory fragmentation. When I'm done with a variable | set it
equal to 0 to free up the memory. However, if | understand the manual
correctly, this will not free up contiguous memory, which is what | need.
Delstruct and delvar might help me but they can't be used inside a script,
only at the prompt. | have a feeling I'll be forced to chunk up the data.

VVVVVVVYVYVYVYVYV

Steve -

What manipulations are you doing?! 256MB certainly seems like it should
Zﬁough memory. Try setting the "limit" parameter. Also, you might want
:joownload TOP, a utility that shows you how much memory and cpu usage
g?c()::ess is using...may help you trace which steps are increasing your
memory usage, as the top display is updated every 5 seconds. You can get
top from:

ftp.groupsys.com:/pub/top/top-3.5beta7.tar.gz

>
> Also, is there a way to remove a set of records from an array of structures
> if the records to delete are known without using the "where" command and
> without creating a tempory variable in the memory?

If you mean that you would like to remove elements of your array of
structures,

then you can do this simply with something like:

ToDel =[3,22,89] ; Known indices to remove

Indices = lindgen(n_elements(Array))

Newlnd = SetDifference(Indices, ToDel) ; SetDifference() included
below

Array = (temporary(Array))[NewInd]

Page 1 of 4 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1324
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9243&goto=14740#msg_14740
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=14740
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

If the memory overhead for this method is too high, you might want to
consider

creating a linked list of structures instead of a simple array; this
allows you

to delete/add nodes easily, with no memory overhead.

Dave

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

David S. Foster Univ. of California, San Diego

Programmer/Analyst  Brain Image Analysis Laboratory

foster@biall.ucsd.edu Department of Psychiatry

(619) 622-5892 8950 Via La Jolla Drive, Suite 2240
La Jolla, CA 92037

; SETARRAY_UTILS.PRO [RSI] 9-04-97

; Routines posted on newsgroup by RSI. Setintersection() is much
; faster than Find_Elements(), but it returns the elements

; themselves, not the indices. Also, it ignores duplicate elements.

; Set operators. Union, Intersection, and Difference (i.e. return
; members of A that are not in B.)

; These functions operate on arrays of positive integers, which need
; not be sorted. Duplicate elements are ignored, as they have no
; effect on the result.

; The empty set is denoted by an array with the first element equal to -1.

; These functions will not be efficient on sparse sets with wide

; ranges, as they trade memory for efficiency. The HISTOGRAM function
; Is used, which creates arrays of size equal to the range of the

; resulting set.

; For example:

; a=[2,4,6,8]

; b=1[6,1,3,2]

; Setintersection(a,b) =[ 2, 6] ; Common elements

; SetUnion(a,b) =[ 1, 2, 3, 4, 6, 8] ; Elements in either set

; SetDifference(a,b) =[ 4, 8] ; Elements in A but not in B

. Setintersection(a,[3,5,7]) = -1 = Null Set

Page 2 of 4 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

FUNCTION SetUnion, a, b

if a[0] It O then return, b ;A union NULL = a

if b[0] It O then return, a ;B union NULL = b

return, where(histogram([a,b], OMIN = omin)) + omin ;Return combined set
end

FUNCTION SetIntersection, a, b

minab = min(a, MAX=maxa) > min(b, MAX=maxb) ;Only need intersection of ranges
maxab = maxa < maxb

If either set is empty, or their ranges don't intersect: result = NULL.
if maxab It minab or maxab It O then return, -1

r = where((histogram(a, MIN=minab, MAX=maxab) ne 0) and $
(histogram(b, MIN=minab, MAX=maxab) ne 0), count)

if count eq 0 then return, -1 else return, r + minab

end

FUNCTION SetDifference, a, b ; = a and (not b) = elements in A but notin B
mina = min(a, MAX=maxa)
minb = min(b, MAX=maxb)
if (minb gt maxa) or (maxb It mina) then return, a ;No intersection...
r = where((histogram(a, MIN=mina, MAX=maxa) ne 0) and $
(histogram(b, MIN=mina, MAX=maxa) eq 0), count)
if count eq O then return, -1 else return, r + mina
end

: A somewhat belated reply to the numerous postings on finding the
; common elements of vectors:

; > Given vectors of the type...

>
;>a=[1,2,3,4,5]
;>b=1[3,4,5,6,7]
© >

; > What is the most efficient way to determine which values that occur in
; > a also occur in b (i.e., the values [3,4,5] occur in both a and b).
P>

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; Below appear three IDL functions that operate on sets represented by

; arrays of positive integers. The Setintersection(a,b) function

; returns the common elements, SetUnion(a,b) returns all unique elements
; in both arguments, and SetDifference(a,b) returns the elements

; (members) in a but not in b.

; It is faster than previously published functions, e.g. contain() and
; find_elements().

; Hope this helps,
; Research Systems, Inc.

File Attachnents

1) setarray_utils.pro, downl oaded 75 tines

Page 4 of 4 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=getfile&id=78
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

