Subject: Question for RSI: Call_external/dims vs Callable IDL...
Posted by steinhh on Wed, 21 Apr 1999 07:00:00 GMT

View Forum Message <> Reply to Message

It's beginning to dawn on me that | may have misunderstood
something fundamental about the nature of call_external code
vs Callable IDL. This question is mostly directed towards the
friendly people at RSI who follow this newsgroup closely, but
if anyone else have information on this subject, please speak

up.

Is it correct, as | now suspect, that none of the routines
described in the "Callable IDL" section of the External
Development Guide are supposed to work from within
call_external/dlm routines?

l.e., is it supposed to be impossible to use calls like
IDL_ExecuteStr("CALL_PROCEDURE,'myprog',F") inside an added
system routine?

If so, then | *strongly* suggest that you provide at least two
extra functions in the next version, e.g.:

vptr = IDL_Call_Function("myfunc”,argc,argv [,argk]);
IDL_Call_Procedure("myproc",argc,argv [,argk]);

or possibly more generally:

vptr = IDL_CallSysFunc("CALL_FUNCTION",argc,argv [,argk]);
IDL_CallSysProc("CALL_PROCEDURE",argc,argv [,argk]);

The reason I'm asking is that I'm trying to implement the
MINPACK minimization routines (in Fortran) as system routines
in dims, and for that purpose | need to be able to call
user-written procedures with input/output parameters.

Until yesterday, | was to be under the impression that an

added system routine had a local variable space of it's own

(since IDL_M_NAMED_GENERIC messages do report errors to occur
inside a named routine just like the MESSAGE procedure does

inside normal procedures), and that (named!) local variables

could safely be created/retrieved within this scope with
IDL_FindNamedVariable(), and referred to in execute statements

like "CALL_PROCEDURE,'myprog',F" (communicating the contents
of local variable "F" to and from routine "myprog").

If that's the way it's supposed to work, | have a bug
report. Consider the files idImfun.pro, idimder.c and

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9463&goto=15099#msg_15099
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15099
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

idimder.dlm below for an absolutely *minimal* example. As it
is, you may execute the function idimder both with and without
a parameter, with no problem. Note, however, that the
variable FF referred to in the execute string is created at

the SMAINS level.

Now, delete the IDL_ExecuteStr("help") call, and recompile
into a dim. Calling idimder with no argument still works, but
when given a parameter it crashes:

IDL> idlmder ;; Ok
IDL> idlmder,n
Segmentation fault

This is on { alpha OSF unix 5.2 Oct 30 1998}, btw.

If this is not supposed to work, well, then the
call_external/dlm mechanism is a lot less useful than it could
be (crippled, I'd say), and you definitely ought to spend the
(quite small) effort to tell us how to interface with the
internals of IDL to avoid it..

Those who have gone to great lengths to understand dims in the
first place are surely capable of understanding how to call

the functions I've sketched above, with almost no further
explanation. Also, having functions like this would be a

benefit anyway, since it'll allow dims to execute IDL

statements (through procedures/functions) without the
compilation overhead that's associated with every
IDL_ExecuteStr call (even when repeating the same statement a
zillion times).

Regards,
Stein Vidar

idImfun.pro--------=-=-=-=-===-msmmm e cut
PRO idImfun,pder

pder = dblarr(10)
END

idImder.C----------=-m e cut
#include "stdio.h"
#include "export.h"

void IDLMDER(int argc, IDL_VPTR argv[])
{

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL_ExecuteStr("CALL_PROCEDURE,'idImfun',FF");
IDL_ExecuteStr("help");/* Delete this & die! */

}

int IDL_Load(void)
{
static IDL_SYSFUN_DEF proc_def[] = {
{(IDL_FUN_RET) IDLMDER,"IDLMDER",0,1}
¥
return IDL_AddSystemRoutine(proc_def,FALSE,IDL_CARRAY_ELTS(proc_def));

idimder.dlm--============ = cut
MODULE IDLMDER

DESCRIPTION Subroutines: LMDER
BUILD_DATE 21 Apr 1999

SOURCE S. V. H. Haugan

PROCEDURE IDLMDER 0 1

Page 3 of 3 ---- Generated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

