Subject: Re: object toddling
Posted by davidf on Fri, 30 Apr 1999 07:00:00 GMT

View Forum Message <> Reply to Message

Martin Schultz (mgs@io.harvard.edu) writes:

> inspired by my youngest daughter who is taking her first attempts to
> reach higher objects ;-) by climbing, | thought | should finally give
> objects a try as well (for purely educational purposes ... yet).

Just for the record, Martin, | would be perfectly
content if you used your copious amounts of free time
to fix that Explore program of yours and put the output
in draw widgets. But...since you bring objects up.

Here is what | don't understand about the IDLgrAxis objects:

>
>
> *why do you have to specify X, Y, or Z for the COORD_CONYV keyword? If
> itis really only one axis, say X, there shouldn't be any need to refer

> toYorZ

How else could you get that nice, fat 3D axis? Your problem

is that you are thinking in 2D space, when you want to be

thinking in 3D space. (I'll concede that it is more natural

to think of axes as 2D or even 1D objects, but you choose

the example to build, not me.) The IDL object graphics

system is a 3D system, for better or worse.

> That should be a matter of the Model class, shouldn't it?

It *can* be a property of the Model class. In fact, it often

is. But most of these graphics primitives that RSI provides
can also be scaled and translated individually. How you do
the scaling is completely up to you. You do the same thing
whether you do it to the model or to the primitive.

* apparently it is not possible to specify coordinate transformations

other than linear. In my daily life, | often deal with pressure

coordinates or sometimes with Arrhenius plots (i.e. 2000/T). In my
understanding of OOP, there should be a method IDLgrAXxis::CoorConv which
would take care of this, and when you build a plot, you would have to

choose between e.g. a IDLgrLinearAxis, IDLgrLogAXis, IDLgrArrheniusAxis,
IDLgrPressureAxis, etc. Does this make sense?

VVVVYVYVYV

Sure. | presume this is why you are building your own axis, right?
If you want a pressure axis, you are free to build it and write your
own CoorConv method that scales the axis appropriately for your
intended use. That is exactly the point of objects.

Page 1 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9561&goto=15306#msg_15306
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15306
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

* if the last point is reasonable: how do you deal with on-the-fly

object creation (example: a hypothetical widget driven plot program
would create a plot with linear axis as default, but the user should be
able to switch these to any other defined axis type per drop down list).

V V V V

| would probably write that CoorConv method you want to
write above to accept an argument that indicates what

kind of axis you want to build: 0 means linear, 1 means log,
2 means pressure, etc.

Changing the axis on the fly only means calling the SetAxisType
method you are also going to write to change the scaling appropriately.

* here comes the most subtle and severe problem: is there any way to
dynamically change methods of a superclass? Say you have a
grAxis::DrawLine method which would take care of drawing the basic axis
line. Now someone wants to change the look of the axis line e.g. by

giving it a color shading or a 3D effect (pretty gimmicky but it's just

an example). Just defining another subclass which would take care of

this wouldn't work, because then you "loose" all the derived axis like
linear, log, etc.). On the other hand, if you have to rewrite the
grAxis::DrawLine method, you can't go back (in a sense) and you wouldn't
be able to do so if the grAxis object was only available as a SAV file.

VVVVVYVVYVYVYV

Object methods are just regular IDL procedures and functions,
So creating a "new" superclass draw method would really only

involve compiling a "new" IDL program module with the correct
name. That would take care of SAVE files.

But | fail to see the need for this, and | think you

may be misunderstanding how the draw methods for these objects
will really work. | don't think of them, necessarily, as "layering"

one draw method on top of another. | think of the method as working
with a bunch of graphic primitives to build the object you want to
display.

There must be some solution to this, because it somehow resembles the
problems that you have with different devices. Maybe the trick is to
"atomize" even further and have grAxis consist of grLine objects which
could then be replaced by grFancyLine? But how do you do this? And how
do you do this dynamically? And where do you stop atomizing?

VVVVYV

| think this is the correct approach, although | have to admit

| feel a little unsure what question you are really asking here.
You stop "atomizing", as you put it, when you get to the basic
atomic primitives.

Page 2 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Let me give

another example where this could be a problem: data transformations.
Say, we have this great program to plot any data any way we like (of
course with the help of a nifty object hierarchy), but now you want to
perform calculations with the data that you are plotting. Adding a
predefined calculator object would probably not work, because you never
know which calculations the user wants to perform. Hence, you should be
able to call basically any (mathematical) function from within the

object. And when you want to combine values from two or more objects,
this problem becomes even messier. Perhaps you could get away with some
EXECUTE statement in the obj::Calculate method, but wouldn't that defy
the whole concept of OOP?

VVVVVVVYVYVYVYVYV

| fail to see why this would defy the whole concept of OOP.

Unless you think there is some stricture in the definition of

OOP that would prohibit someone from writing boneheaded programs.
If there is, I'm quite sure there aren't enough program police

to enforce the rule anyway. :-)

But, in any case, this is what error checking is all about and you
have to do it with objects just like you have to do it with
everything else.

> What | didn't like at all when | read it, was the sentence: "Objects are
> rendered in 3 dimensions ...

"Get used to disappointment,” as Welsey says in the Princess Bride.

> Shouldn't RSInc have started with a
> 2D object model and add 3D functionality as sub classes?

In retrospect!? Maybe. But they didn't. And object graphics ain't.
And they *sure* weren't going to delay the release of IDL 5.0 for
another year and a half more while they backtracked.

> | would really like to
> see an "object-shell" around the familar direct graphics.

Ah, well. Then you definitely want to be first in line to get

my new book. There is a LOT of good that can be done with an object
shell around the familiar direct graphics. These include faster
drawing, *w-a-y* faster printing, and fast development time.

(And Dick and | would be willing to sell you something if you don't
want to build your own. :-)

> |f you don't think my questions are
> outright silly, then maybe | can hop on board for this kind of
> development at some point.

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Wouldn't it be fun to get 10-12 people together to write programs
for 3-4 days? With the right people we would have so many good
programs come out of it that the newsgroup would be using our
programs for years to come. :-)

One pre-requisite though: | would make it a

strong point that plots should be readily "scalable"”, i.e. you would

define a page size and panel size (and plotwindow size), and when you
change the panel size, everything in the plot would shrink, unlike in
normal direct graphics mode where you are never saved from suprisingly
different charsizes, label positions, etc.

V VVVYVYV

You must be reading that book | sent you! :-)

Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting

Phone: 970-221-0438 E-Mail: davidf@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

[Note: This follow-up was e-mailed to the cited author.]

Page 4 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

