
Subject: object toddling
Posted by Martin Schultz on Fri, 30 Apr 1999 07:00:00 GMT
View Forum Message <> Reply to Message

Hi all,

 inspired by my youngest daughter who is taking her first attempts to
reach higher objects ;-) by climbing, I thought I should finally give
objects a try as well (for purely educational purposes ... yet). After
all, I want to be able to understand what my kids are talking about once
they learn IDL ;-) So, I read a little, and quite early there were some
things in the OOP guide which seemed strange to me. I had done one
previous excursion into object land a couple of years ago (when Borland
Pascal added that functionality), and as far as I remember, I got stuck
at a similar stage. As a nice example, I thought of writing my own
grAxis object -- virtue being that something like this already exists so
one could peek into the problem solution once a while.

 Here is what I don't understand about the IDLgrAxis objects:

* why do you have to specify X, Y, or Z for the COORD_CONV keyword? If
it is really only one axis, say X, there shouldn't be any need to refer
to Y or Z.
That should be a matter of the Model class, shouldn't it?

* apparently it is not possible to specify coordinate transformations
other than linear. In my daily life, I often deal with pressure
coordinates or sometimes with Arrhenius plots (i.e. 1000/T). In my
understanding of OOP, there should be a method IDLgrAxis::CoorConv which
would take care of this, and when you build a plot, you would have to
choose between e.g. a IDLgrLinearAxis, IDLgrLogAxis, IDLgrArrheniusAxis,
IDLgrPressureAxis, etc. Does this make sense?

* if the last point is reasonable: how do you deal with on-the-fly
object creation (example: a hypothetical widget driven plot program
would create a plot with linear axis as default, but the user should be
able to switch these to any other defined axis type per drop down list).
Do you have to code in a case statement like:
 if (type eq 0) then left_axis = obj_new('grLinearAxis', ...)
 1 'grLogAxis',...
... Hey! I guess you can refer to the class via a string variable:
 AxisClass = ClassName[WidgetInfo,listID,select=select]
 left_axis = obj_new(AxisClass, common_options)
true?

* here comes the most subtle and severe problem: is there any way to
dynamically change methods of a superclass? Say you have a
grAxis::DrawLine method which would take care of drawing the basic axis

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9567&goto=15309#msg_15309
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15309
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

line. Now someone wants to change the look of the axis line e.g. by
giving it a color shading or a 3D effect (pretty gimmicky but it's just
an example). Just defining another subclass which would take care of
this wouldn't work, because then you "loose" all the derived axis like
linear, log, etc.). On the other hand, if you have to rewrite the
grAxis::DrawLine method, you can't go back (in a sense) and you wouldn't
be able to do so if the grAxis object was only available as a SAV file.
There must be some solution to this, because it somehow resembles the
problems that you have with different devices. Maybe the trick is to
"atomize" even further and have grAxis consist of grLine objects which
could then be replaced by grFancyLine? But how do you do this? And how
do you do this dynamically? And where do you stop atomizing? Let me give
another example where this could be a problem: data transformations.
Say, we have this great program to plot any data any way we like (of
course with the help of a nifty object hierarchy), but now you want to
perform calculations with the data that you are plotting. Adding a
predefined calculator object would probably not work, because you never
know which calculations the user wants to perform. Hence, you should be
able to call basically any (mathematical) function from within the
object. And when you want to combine values from two or more objects,
this problem becomes even messier. Perhaps you could get away with some
EXECUTE statement in the obj::Calculate method, but wouldn't that defy
the whole concept of OOP? After all, you don't know from within the
object what this "classic" function would do to your data!

What I didn't like at all when I read it, was the sentence: "Objects are
rendered in 3 dimensions ... As a result, the time needed to render a
given object ... will often be longer than the time taken to draw the
analogous image in Direct Graphics." Shouldn't RSInc have started with a
2D object model and add 3D functionality as sub classes? Or was this not
feasible because of problems similar to the ones described above (or
much trickier ones which I am too novice to see)? I would really like to
see an "object-shell" around the familar direct graphics, I guess this
was something David F. has in mind ? If you don't think my questions are
outright silly, then maybe I can hop on board for this kind of
development at some point. One pre-requisite though: I would make it a
strong point that plots should be readily "scalable", i.e. you would
define a page size and panel size (and plotwindow size), and when you
change the panel size, everything in the plot would shrink, unlike in
normal direct graphics mode where you are never saved from suprisingly
different charsizes, label positions, etc.

David: are you dealing with these issues in your forthcoming book?

Thanks for any helpful replies,
Martin.

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

--

 |||||||||||||||\\\\\\\\\\\\\-------------------///////////// //|||||||||||||||
Martin Schultz, DEAS, Harvard University, 29 Oxford St., Pierce 109,
Cambridge, MA 02138 phone (617) 496 8318 fax (617) 495 4551
e-mail mgs@io.harvard.edu web http://www-as/people/staff/mgs/

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

