
Subject: Re: Specification for a new array slicing function
Posted by Martin Schultz on Thu, 20 May 1999 07:00:00 GMT
View Forum Message <> Reply to Message

Stein Vidar Hagfors Haugan wrote:
>  
>  In article <374317CC.E1AC89EA@ssec.wisc.edu> Liam Gumley
>  <Liam.Gumley@ssec.wisc.edu> writes:
>  
>>  Please find below a suggested specification for a new array slicing
>>  function, 
>  [...]
>>  ; result = array_slice( array, stride=stride )
>>  ; help, result
>>  ;
>>  ; ;RESULT          FLOAT     = Array[1, 5, 2, 3, 3]
>  
>  IMO, the use of keyword parameters for START, STRIDE and
>  COUNT is a bit "wordy" for my liking. And these items
>  are really essential to the routine as such. So why not
>  use positional parameters?
>  
>  For something that really ought to be a part of the IDL
>  syntax, I would also like a shorter name (despite the
>  possibility for name conflicts), like "arex", short
>  for array_extract.

good points. Although I would add one more character and name it "arrex"
to avoid confusion with "ar"gument or "ar"ea etc. (only "arr"ow left
then ;-)

>  
>  My suggestion would be something a bit more like the native
>  Fortran 9X syntax (not that I actually *know* exactly how that
>  syntax works!) , e.g.:
>  
>  a(0:5:2,:,5:9) would be translated into
>  
>    arex(a,[0,5,2],-1,[5,9])
> 
Sounds nice, however, this is truely up to RSInc to implement. I assume
Liam's proposal was something we, the community, could do ourselves. 

Anyway, I asked our Fortran 90 expert, and he told me the following:
- the 3 optional parameters work exactly like a DO (IDL=FOR) loop, i.e.
you have start, end , stride
- you can leave any of them empty which is implicitely defaulted to all,
all, 1

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9619&goto=15566#msg_15566
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15566
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


- a statement like A(::1,LM) = A(::LM,1,-1) reverses the last
dimension   

If RSInc would go for this, I think they should try to use the same
conventions. It's already bad enough to have to rethink DO and FOR each
time you change.

 
>  Looking at the example above, you may wonder what the "-1" is
>  doing there... Well, the idea is that one could use a
>  nonnegative *scalar* parameter to signify extraction of a
>  slice at a given position, whilst -1 really means "*", in IDL
>  notation.

Then, why shouldn't it be "*" as always ?
(or even better, allow the empty field as in F90: A[:1:-1] would be
identical to
    reverse(A[1:*]) in the current syntax)

>  
>  I mean - if I'm extracting an "image" out of a "cube", why
>  would I want the last dimension to stick around...???
>  
>  So, I would like to be able to say
>  
>      surface,arex(a,-1,3,-1)
>  
>  with no error messages! On the other hand, if I do want the
>  dangling dimension, I could specify it:
>  
>      surface,arex(a,-1,[3],-1)
> 

this seems to be somewhat messy: the "syntax" would rather be
    ARRAY[ start1:end1:stride1, start2:end2:stride2, ... ,
start8:end8:stride8 ]

instead of ARRAY[ [s1:e1:str1],[s2:e2:str2], ... ]
So, I don't think  A[:3:] would (and should) be different from A[:[3]:] 
You'll probably have to stick with good old REFORM for this.
 
 
>  I would also like to see a corresponding index function,
>  returning the one-dimensional indices to the extracted
>  elements instead of the elements themselves. This could
>  be used for assignments. I.e.:
>  

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>      a(arexi(a,-1,[3],[0,2])) = data_block

More generally, this points to the problem of converting 1-dimensional
index arrays (as from WHERE) to multi-dimensional arrays and vice versa.
We had a related discussion in this group a while ago. If I remember
correctly, this was about what people expect from
    A[ ind1, ind2, ind3 ]   where ind1, ind2, ind3 are 1-dimensional
vectors > 1 element.

Here is what I see:
(1) multi-dimensional index

    a = findgen(10,10,10)
    b = lonarr(2,3,4)
    ; fill b with some values
    b[*,1,4] = 3
    help,a[b]
    print,a[b]

*BUT* is b not in fact interpreted as a 1-D index? Suspicion arises
because a[b,1,1] will
also work (and return a 1D array).

(2) combi of 1-dimensional indices
    a = findgen(10,10,10)
    b1 = [1,2]
    b2 = [2,3]
    b3 = [4,8]   ; don't try b3=[3,6,7] !
    help,a[b]
    print,a[b]

So, YES! It would be nice if one could use a multi-dimensional array
index, but there are several pitfalls here, and it appears as a
non-trivial problem.

Regards,
Martin

-- 

 |||||||||||||||\\\\\\\\\\\\\-------------------///////////// //|||||||||||||||
Martin Schultz, DEAS, Harvard University, 29 Oxford St., Pierce 109,
Cambridge, MA 02138          phone (617) 496 8318   fax (617) 495 4551
e-mail mgs@io.harvard.edu    web http://www-as/people/staff/mgs/

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

