Subject: Re: Resampling data with irregular time base
Posted by Martin Schultz on Mon, 07 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

Karl Krieger wrote:

| have data with an irregular time base, which | would like to resample
in a regular spaced time base. How can | average over all original data
points in each interval of the new time vector without resorting to a
FOR loop?

Currently | am using this horrible kludge:

deltat = newtime[1] - newtime[0]
FOR n=0, n_elements(newtime)-1 DO BEGIN
index = where((oldtime GT (newtime[n]-deltat/2.)) AND $
(oldtime LE (newtime[n]+deltat/2.)), $
count)
IF count GT 0 THEN newdata[n] = total(olddata[index]) / count
ENDFOR

Any idea how to transform this in vectorized IDL code? At the moment |
see no way apart from writing the function in C and calling it by
linkimage.

Best

Karl

VVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

To reply by email please replace domain .NOSPAM by .de in reply address
Hi Karl,

I would also do it with a for loop, but | wouldn't call WHERE. Rather
| would go for the old "FORTRANY" approach and loop over each element,
get the sum and count the number of time steps you pass, and compute the
average as soon as you reach the next regular time step. As an example
you could take a look at my attached run_av.pro which computes running
averages and can handle irregular series (just "regridding" is even
easier). One further big advantage of this method is that you can easily
exclude "missing"” data on the fly. If you have large gaps in your data,
you could think of testing for the next regular time step after each
averaging step and then fill the gaps with one fltarr() command instead
of looping through 1000 void steps.

One hint: make sure that you use LONG integers in your FOR loops! | just
realized | didn't adhere to that in the attached version of run_av.pro

Page 1 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9717&goto=15680#msg_15680
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15680
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Regards,
Martin.

Never trust anyone less than yourself!

[TTTTTTTTANWAAN - oo AT AT

Martin Schultz, DEAS, Harvard University, 29 Oxford St., Pierce 109,
Cambridge, MA 02138 phone (617) 496 8318 fax (617) 495 4551
e-mail mgs@io.harvard.edu web http://www-as/people/staff/mgs/

; $1d: run_av.pro,v 1.10 1999/01/22 20:12:17 mgs Stab $
+

; NAME:

; RUN_AYV (function)

; PURPOSE:

; Compute running average or running total of a

; data vector. Compared to the IDL function TS_SMOOTH,

; this function takes into account missing values or

; gaps in an optional x vector, and it allows for

; even bandwidths. It can also be used to compute cumulative
; totals.

: CATEGORY:
) math

; CALLING SEQUENCE:

; result = RUN_AV(Y [,X] [,keywords])

; INPUTS:

; Y -> the data vector (a 2-D array will be treated as a vector)

; X -> an optional X vector defining e.g. the sample times.

; This only has an effect when the DELTAX keyword is specified.
; X must be monotonically increasing and have the same

; number of elements as Y.

; KEYWORD PARAMETERS:
; WIDTH -> The number of points to use for the average or total
: Default is 1, i.e. Y is returned unchanged.

: MINWIDTH -> The minimum number of points that must be valid
; in order to return a average or total for the given point.
: Default is MINWIDTH=WIDTH, i.e. all points must be valid

Page 2 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

(and if X and DELTAX are specified, all points must lie
within WIDTH*DELTAX).

MIN_VALID -> The minimum value for valid data. Data with less than
MIN_VALID will be considered missing. MIN_VALID is also used
to indicate invalid totals or averages (1% is subtracted).

DELTAX -> The maximum gap between two consecutive x values.
Only effective when X is given.

COUNT -> A named variable will return the number of points used
in each average or total.

ITOTAL -> Set this keyword to compute running totals instead
of running averages.

; OUTPUTS:

The function returns a vector with running averages or totals.
The number of elements in the result vector always equals the
number of elements in Y (unless an error occurs).

; SUBROUTINES:

REQUIREMENTS:

; NOTES:

This function can also be used to compute accumulative totals.
Simply set WIDTH to n_elements(Y) and MINWIDTH to 1 and use
the /ITOTAL keyword. However, this is very uneffective for large
data vectors!

; EXAMPLE:

y = findgen(20)
print,run_av(y,width=4)
; IDL prints: -1E31 -1E31 -1E31 1.5 2.5 3.5 45 ...

print,run_av(y,width=4,/TOTAL)
; IDL prints: -1E31 -1E31 -1E31 6 10 14 18 ...

; (cumulative total)
print,run_av(y,width=n_elements(y),minwidth=1,/TOTAL)
;IDLprints: 0 1 3 ... 190

x=[0,2,4,6,16, 20, 24, 25, 26, 27, 28, 29, 30, 32, 33]
y = fltarr(n_elements(x)) + 1.
print,run_av(y,x,width=4,count=c)

; IDL prints: -1E31 -1E31 -1E31 1 1 1 1 ..

print,c

Page 3 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; ;IDLprints: 1 2 3444444444444

; print,run_av(y,x,deltax=2,width=4,count=c)

; . IDL prints: -1E31 -1E31 -1E31 1 -1E31 -1E31 -1E31
; ; -1E31 -1E31 -1E31 1 1 1 1 1

; print,c

; ;IDLprints: 1 23 4321123444414

; MODIFICATION HISTORY:

; mgs, 21 Oct 1998: VERSION 1.00

; Copyright (C) 1998, Martin Schultz, Harvard University

; This software is provided as is without any warranty

; whatsoever. It may be freely used, copied or distributed

; for non-commercial purposes. This copyright notice must be
; kept with any copy of this software. If this software shall

; be used commercially or sold as part of a larger package,

; please contact the author to arrange payment.

: Bugs and comments should be directed to mgs@io.harvard.edu
; with subject "IDL routine run_av"

function run_av,y,x,width=width,min_valid=min_valid,deltax=deltax, $
minwidth=minwidth,count=rcount,total=ctotal

result = 0.
if (n_elements(y) eq 0) then return,result

average = not keyword_set(ctotal)

if (n_elements(width) eq 0) then width=1 $
else width = fix(abs(width[0]))

if (n_elements(minwidth) eq 0) then minwidth = width $
else minwidth = minwidth < width ; no larger than width!

if (width eq 0) then begin
message,’"WIDTH must be greater or equal 1!',/Cont
return,result

endif

Page 4 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

accu = fltarr(width)

count = intarr(width)

result = fltarr(n_elements(y))
rcount = intarr(n_elements(y))
ic=0

if (n_elements(min_valid) eq 0) then min_valid = -9.99E30

if (n_elements(x) eq 0) then begin
; loop through y vector and accumulate
for i = 0,n_elements(y)-1 do begin

if ((i-ic) ge width) then ic = ic + width

; add current y value to all buffer elements
; if greater min_valid
; and increment counter
if (y[i] gt min_valid) then begin
accu[*] = accu[*] + y[i]
count[*] = count[*] + 1
endif

; read out ith buffer value and reset ith buffer
rcount[i] = count[i-ic]
if (count[i-ic] ge minwidth) then begin

result[i] = acculi-ic]

if (average) then result[i] = result[i]/rcount]i]
endif else begin

result[i] = min_valid
endelse

acculi-ic] = 0.
count[i-ic] =0

endfor

return,result
endif

; VERSION 2: with x array
; same as above, but needs to take care of min x steps

Page 5 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

if (n_elements(x) ne n_elements(y)) then begin
message,'’X and Y must have same number of elements!',/Cont
return,0.

endif

if (n_elements(deltax) eq 0) then begin
xdiff = x - shift(x,1)
deltax = max(xdiff[1:*])

endif

; loop through y vector and accumulate
for i = 0,n_elements(y)-1 do begin

if ((i-ic) ge width) then ic = ic + width

; add current y value to all buffer elements

; if greater min_valid

; and increment counter

if (y[i] gt min_valid and x[i]-x[(i-1)>0] le deltax) then begin
accu[*] = accu[*] + y[i]
count[*] = count[*] + 1

endif

; read out ith buffer value and reset ith buffer
rcount[i] = count[i-ic]
if (count[i-ic] ge minwidth) then begin

result[i] = acculi-ic]

if (average) then result[i] = result[i]/rcount]i]
endif else begin

result[i] = min_valid
endelse

acculi-ic] = 0.
count[i-ic] =0

endfor

return,result

end

File Attachnents

1) run_av. pro, downl oaded 73 tines

Page 6 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=getfile&id=107
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

