Subject: Re: how does /no_copy work???
Posted by steinhh on Fri, 04 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

In

article <MPG.11c106a5c342a5ab9897d0@news.frii.com>

davidf@dfanning.com (David Fanning) writes:

>

VVVVVVVVVYVVYVYVYVYVYV

John Persing (persing@frii.com) writes:

But let me ask, how can this be possible when deal with a variable that
"starts" on the stack and "ends up" on the heap? If B is an ordinary array
and A is property of an object, then this is what will occur. The heap and
stack are entirely different memory locations.

I'm rapidly getting out of my depth here, but it seems to me that
the *object* itself is on the heap, but that the actual data that
fields in the object point to can be anywhere in process memory.
All that has to be stored in the object field is a pointer

(a *real* pointer, not an IDL pointer) to the real data. This

is what is passed, isn't it, when a variable is passed by
reference? If that wasn't the case, how else could a variable

be stored in a widget user value with NO_COPY, which to my
mind is equivalent to the heap (l.e, a global memory location)?

And keep in mind that "stack" and "heap" have meanings in IDL
that *may* not correspond to what you usually think about when you
use these terms.

Whew, | can't feel the bottom any more! :-(

| think you're OK, David - just don't try to breathe while your

he

Le

ad is below water.. :-)

t me se if | can add anything to this.

An IDL variable (within the current scope) or expression is always
associated (*) with a block of data called an IDL_VARIABLE

str

ucture. Even if it's undefined - in fact, "undefined" is a data

type in IDL...

For all *scalar* *numeric* data types, the value is stored

*W

ithin* that structure. For strings & arrays, the data itself is

stored another place - in some part of some heap memory - and
the IDL_VARIABLE contains a (true) pointer to the data.

"Passing parameters by reference"” means that the parameters are

se

data blocks representing the parameters. Thus in fact *all*

nt to subroutines by means of (true) pointers to IDL_VARIABLE

parameters are passed by reference (none are passed by value!).

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9704&goto=15718#msg_15718
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15718
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

It's just that an IDL_VARIABLE structure that represents
"expressions" do not correspond to a named variable, and the
IDL_VARIABLE structure has a flag set to indicate this fact.

For normal variables & expressions (inside functions), | guess the
IDL_VARIABLE structures are allocated as slots in some "variable
stack” (and not necessarily the processor stack, as David points
out). These slots are deallocated when a subroutine returns.

So what's up with pointers & objects? Well, such beasts are IDL
variables like all the others, so if "my_ptr" is a pointer, it's
associated with an IDL_VARIABLE slot on the variable stack, and
you would look up that slot (given the variable name) just like

for all other variables.

But the IDL_VARIABLE associated with "my_ptr" doesn't contain the
value of "*my_ptr", it contains a "magic number".

The magic number is like a variable name in some *global*
scope. Internally, IDL can use the magic number to find the
location of an IDL_VARIABLE structure that represents this global
variable. This structure does *not* reside on the variable stack,

so when a subroutine returns, it's not deallocated.

Everyone who knows the magic number can look up the IDL_VARIABLE
structure associated with it. You can share the magic number by

making copies of the IDL_VARIABLE structure containing the magic
number (the "value" of "'my_ptr"), and the data can be shared

between different scopes.

| guess | should leave it to the reader as an exercise to figure
out what the difference between a null pointer and a pointer
to an undefined variable is... :-)

Regards,

Stein Vidar

(*) At least after you've attempted to look up that variable..

Page 2 of 2 ---- Cenerated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

