
Subject: heap and stack
Posted by John Persing on Wed, 16 Jun 1999 07:00:00 GMT
View Forum Message <> Reply to Message

I will present a hypothesis, then a line of evidence, then I will wait for
somebody else on the group to post a more sensible explanation.

Hypothesis:
There are three type of variables: stack variables, temporary variables,
and heap variables. (Plus a fourth type of abstraction of a "variable"
which stores information about user-defined variable types like structures
and objects, which we need not worry about here.) All are of the same
format: a structure of metadata that includes a reference to the memory
location of the first element of the data. The three forms differ only in
their metadata.

Example:
IDL> a = [5, 6, 7]
IDL> help, a
A INT = Array[3]
IDL> b = PTR_NEW(TEMPORARY(a))
IDL> help, b
B POINTER = <PtrHeapVar1>
IDL> help, a
A UNDEFINED = <Undefined>
IDL> help, *b
<PtrHeapVar1> INT = Array[3]
IDL> print, b
<PtrHeapVar1>
IDL> print, *b
 5 6 7

A stack variable counts the number of its own occurrences. A temporary
variable probably has the most primitive metadata structure. Pointers are
organized into a master, global list.

In the first assignment "a = [5, 6, 7]", first "[5, 6, 7]" is converted to a
primitive, temporary variables allocating a piece of memory to store the
array. Then a stack variable "a" is created with "1" instance and the
memory location is transcribed to "a". Then the temporary metastructure is
destroyed.

In the second assignment "b = PTR_NEW(TEMPORARY(a))", first "TEMPORARY(a)"
creates a temporary metastructure and transfers the metadata from "a" to
this, including the reference to the data. Then the metadata in "a" is set
to appear as an undefined variable, and the number of instance is set to
"0", but something in TEMPORARY circumvents the ordinary behavior of stack
variables to wipe out the data in memory when its occurrences are set to

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3085
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9788&goto=15828#msg_15828
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15828
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

"0". Then the pointer metadata is created, the metadata from the temporary
variable is transfer along with the memory location, and the temporary
metastructure is destroyed. A metstructure for "a" must always remain. The
metastructure for "b" is a stack variable, but it makes reference to no
memory location instead some other piece of metadata in the "b"
metastructure makes reference to "<PtrHeapVar1>".

An alternate explanation is that TEMPORARY does not set number of
occurrences of "a" to "0", just set the memory reference in "a" to a null
reference. Then, the only time that stack variables do their automatic
clean is at the end of functions and procedures and the only times that the
number of occurrences of a stack variable changes is at definition, at the
start of a procedure, at the end of a procedure.

Thanks for any help. The reason I want this depth of detail is that I am
going to pretend to be an expert in it at a group presentation. :)

--
 }3 John Persing }3
 http://www.frii.com/~persing persing@frii.com
Half of all Americans earn less than the median income!!!!!!

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

