
Subject: Re: Efficient IDL programming (use outer product)
Posted by chase on Mon, 06 Dec 1993 17:51:47 GMT
View Forum Message <> Reply to Message

>>>> > "dean" == dean <dean@phobos.cira.colostate.edu> writes:

dean> I just wanted to check to see if anyone would know if I can
dean> illiminated the FOR DO BEGIN loops to make this PRO a little
dean> more efficient.

dean> Thanks again guys,

dean> Kelly Dean

[Kelly wants to efficiently decode a "packed" bit array back into an
"unpacked" bit array.]

Here is something you can try.

For efficiency, what you need is a general outer product that can use
any binary operator, e.g., AND. IDL's outer product "#" uses only
multiplication (see comments at end). Fortunately, you can decode
your bytes into the corresponding bit patterns using multiplication.

Suppose A=bytarr(512,64) contains your data. Then you can obtain your
bit patterns as such:

mask = 2B^indgen(8)

B = bytarr(512,512)

A = transpose(A) ; Put the 64 bytes along the rows.

B(*) = (byte(mask#A(*))/128B)(*)

Here is a smaller example that takes an array of 16 rows of 2 bytes
each and decodes the bits into a 16 by 16 byte array:

IDL> mask = 2^indgen(8)
IDL> z=(bindgen(2)+1)#(bindgen(16)+3)
IDL> help,z
Z LONG = Array(2, 16)
IDL> b=bytarr(16,16)
IDL> b(*) = (byte(mask#z(*))/128b)(*)
;; Unfortunately "#" always seems to convert the types of its operands
;; to LONG before performing the outer product (I would call this
;; unexpected behavior). Hence the byte() conversion _before_ the

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=1116&goto=1597#msg_1597
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=1597
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;; division.
IDL> help,b
B BYTE = Array(16, 16)
IDL> print,b
 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0
 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0
 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0
 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0
 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0
 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0
 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0
 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0
 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0
 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0
 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0
 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0
 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0
;; Space inserted
IDL> print,z
 3 6
 4 8
 5 10
 6 12
 7 14
 8 16
 9 18
 10 20
 11 22
 12 24
 13 26
 14 28
 15 30
 16 32
 17 34
 18 36

If the bits need to go in the opposite order (LSB first), just reverse
the mask array.

IDL Comments/musing/wishful thinking:

I would like to see two `APL'-like operators in IDL for dealing with
vectors and matrices:

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

1) outer products - using a given binary operator.
2) reduction - apply a scalar valued function along one dimension of
 an array (works like TOTAL function when using the dimension
 parameter). For example, return the maximum of each row of a
 maxtrix.

It seems that I was constantly implementing these types of operations
on arrays using FOR loops, especially reduction. (The FOR loops can
make execution _slow_). These can be implemented as functions using
CALL_FUNCTION for reduction and EXECUTE for outer products. However,
these implementations are not nearly efficient as builtin
implementations could be.

A general outer product could be added to IDL by a simple addition to
the syntax similar to the MATLAB "./" operator for element by element
division. For example, IDL could use the "#" as prefix notation to an
operator, e.g.:

 x #+ y
 x #and y
 x #< y

where "#bop" between two vectors means perform an outer product using
`bop' instead of multiplication.

I suppose this is just syntactic sugar and not necessary.

NOTE: If anyone is interested in my OUTER and REDUCE IDL functions
implementing outer products and reduction just ask and I will email
them to you.

Chris

P.S. I am interested in comments/bugs with idl.el and idl-shell.el.
Send them my way.

--
===============================
Bldg 24-E188
The Applied Physics Laboratory
The Johns Hopkins University
(301)953-6000 x8529
chris_chase@jhuapl.edu

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

