Subject: Re: Passing info and destroying widgets...
Posted by Struan Gray on Tue, 22 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

Liam Gumley, Liam.Gumley@ssec.wisc.edu writes:

>

> David Fanning <davidf@dfanning.com> wrote in message
>

>> Liam Gumley (Liam.Gumley@ssec.wisc.edu) gives us an
>> example of a program that can record the last instance
>> of a button push in a non-blocking, non-modal widget

>> No question it works. But | would argue that it works
>> for all the wrong reasons and is a *terrible* programming
>> practice in almost every instance.

Well | guess I'll have to say that my example only
demonstrates that it *can* be done, not that it
necessarily *should* be done.

I've been writing generic helper widgets which behave like the
tool palettes and pattern swatches found in drawing programs. Because
these often manage properties that can be changed elsewhere in the
application, and because they can be left floating about ready for use
at any time, other widgets need to be able to get and set information
about the helper widget's state.

Liam's technique works, but it is ugly (sorry Liam :) and opens an
economy-sized can of worms. My concern is less that users will create
memory leaks, but rather that they will come to depend on a particular
info structure or tag name being present, which makes it hard for me
to revise the helper widget later.

My old solution was for both the main and the helper widget to
send custom events to each other (in the same way that David's colour
table pickers can update draw widgets on 24-bit displays). The helper
widget was defined in a function that returned its own widget ID
instead of a pointer to the info structure.

This works, and is consistent with the overall widget methodology,
but it also causes code-maintainence problems. | find I lose track of
where the custom event structures are defined (sometimes IDL does too)
and they have a habit of proliferating to an alarming extent as the
functionality of the helper widget increases. Also, coding discipline
is demanded to ensure that event handlers of widgets using the helper
in a simplistic way don't lose or trip up on events they are not
interested in.

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1284
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9818&goto=16022#msg_16022
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=16022
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

The new (actually, THE ONE TRUE) way objectifies the widget as
described by Mark Rivers. This simplifies event handling (and
debugging) because the info structure is now referenced by SELF.xXxxXx.

It never needs to be fetched or restored so it can't go missing. The

helper widget creation function returns its object ID and the other

widget(s) can get and set information through methods. Standard

events can be sent to the encapsulated widget by a DO_EVENT method,

and as | mentioned in my earlier post the user now has a way to

prioritise events, bypassing the very crude event management available

in WIDGET_CONTROL. Code becomes more readable since you avoid having
to write (*infoptr).xxxxx everywhere, and | find that procedures and

definitions tend to end up in more logical places on my hard disk.

Why bother? Here's an example: | have a generic viewer widget for
3D model objects. The viewing angle can be set by an embedded
trackball, or by choosing menu items which nudge the object a few
degrees about various axes, or by setting the whole thing spinning
continuously. More exact angular movements, as well as control of the
spin axes and rate, are specified in a helper widget.

Objectification (reification?) makes it much easier to handle the
multiple ways of setting and displaying the viewing angle and letting
all the interested widgets know that changes have occurred. | can
prioritise user commands like 'stop spinning’ or 'reset angle' and |
don't have to worry about them being lost from the event queue when |
remove piled-up timer events after long redraws. Finally, | can do
gee-whiz things while spinning, such as simultaneously changing
background colours or even editing the structure of the model object
in yet another widget.

Sorry this is a bit long, but I'm enthused.

Struan

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

