
Subject: Re: Classes and Widget Event Handlers...
Posted by Struan Gray on Sat, 03 Jul 1999 07:00:00 GMT
View Forum Message <> Reply to Message

David Morris, dmorris@ball.com writes:

> The event-handler for the widget needs to have access to
> all of the variables of the class, and it must have direct
> access to them. Unfortunately, XMANAGER (as far as I can
> tell) does not allow the use of object method-routines as an
> event handler.

 If you make your widget an object that inherits the class whose
variables you want to access, it can do so by using the standard
self.xxx syntax. If you want the object to have a life of it's own
beyond that of the widget you will have to make a way for the widget
to swallow and regurgitate the object when it is created and killed.
Your only other option is to write a generalised GET/SET_PROPERTY
method like those used in the objects graphics classes.

 This seems to have come up a lot recently, so here's Mark Rivers'
(rivers@cars.uchicago.edu) original example of how to make an widget
into an object:

>
> IDL Objects really simplify complex widget programs,
> because so don't have to create a "state" structure and
> stick in the uvalue of a top level widget. Just put the
> object reference to "self" there instead. This is not
> entirely obvious, and the Object manual does not have an
> example, so here is how I do it.
>
> ;; File example__define.pro
>
> function example::init
> base = widget_base(uvalue=self)
> self.widgets.base = base
> self.widgets.exit = widget_button(base, value='Exit')
> widget_control, base, /realize
> xmanager, 'example::init', base, event='example_event', /no_block
> return, 1
> end
>
> pro example_event, event
> ; Note: The main event handler CANNOT be an object method,
> , since xmanager won't know how to call it as such. However,
> ; it only needs to be 4 lines long: retrieve the object
> ; reference and call the object method event handler,

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1284
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9922&goto=16130#msg_16130
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=16130
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> ; which will know about the objects data structure.
> widget_control, event.top, get_uvalue=object
> object->event, event
> end
>
> pro example::event, event
> ; This is the event handler which knows about the object
> case event.id of
> self.widgets.exit: begin
> widget_control, event.top, /destroy
> end
> else: print, 'Unknown widget event'
> endcase
> end
>
> pro example__define
> widgets={example_widgets, base: 0L, exit: 0L}
> data = fltarr(30)
> t = {example, widgets: widgets, data: data}
> end
>

 You create the widget with NEWWID = OBJ_NEW(example). IDL scurries
off and finds the EXAMPLE__DEFINE file, calls the EXAMPLE::INIT method
and away we go. Note that in the event handling method all the
widget's info can be accessed with the self.xxx syntax.

 When this was originally posted in June '97, Ronn Kling and Bob
Mallozzi pointed out you could exploit the way that IDL calls and
defines event handlers. Bob's method sneakily just called the event
handler EXAMPLE::INIT_EVENT and the XMANAGER then did it's usual thing
of appending "_EVENT" to the name of the creation routine to find the
default handler. Ronn Kling used the EVENT_PRO keyword when creating
the top level base to define EXAMPLE::EVENT as an event procedure.

 Both techniques look powerful (and, more importantly, cool :-),
but both seem to rely on the ability to invoke an object method as if
it were a normal procedure, something that should, formally, be
impossible. I've not delved deeply enough into the innards of IDL to
know if this 'bug' lies in the EXECUTE function used to convert
strings to commands, or if there is general leakage between functions,
procedures and methods. I follow Mark's original scheme, and feel
that it makes more sense to lobby RSI to make the XMANAGER
object-aware than to rely on a quirk of IDL syntax that may change at
the next release.

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Struan

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

