Subject: Re: problems plotting LARGE amounts of 2D data?
Posted by jworley on Thu, 24 Feb 1994 21:51:56 GMT

View Forum Message <> Reply to Message

Hi

michael> | am trying to find ways to plot LARGE amounts of 2D data,
michael> and | like to know what is currently the state of the
michael> art. For the sake of this posting, let's say "large" means
michael> much more data than fits in real memory. From my own
michael> experience, using the virtual memory of the workstation to
michael> store large amounts of data impedes performance due to
michael> excessive paging. Here is what | have been able to gather
michael> so far:

michael> 2) Khoros 1: loads everything into virtual memory. Any
michael> updates from Khoros 2.0?

We are actively trying to solve the large data set problem. Itis a
technically challenging problem because the problems posed by large
data sets present different problems in different applications. For
example, in an isolated application, the problem is pretty much

limited to how to get around the virtual memory limitation

efficiently. However, in other environments, such as Cantata (the
visual programming language in Khoros), large data sets also pose
problems because intermediate stages in a processing pipeline can
quickly chew up any temp space that may be available.

The first issue is being addressed by data services. Data services is
a data abstraction that provides read and write data in many file
formats via an application programmers interface (API). This API
provides a means of storing and retrieving data in units that are
convenient to your application area. Data services is responsible for
managing memory by caching only the portions of the data set that you
are processing. Thus, only a reasonable portion of your data set is
in memory at any given time. Data processing programs (including
graphical applications) that are distributed with Khoros 2.0 will be
written to data services. People who use Khoros as a development
platform will be strongly encouraged to write their applications to
data services as well.

The second issue, that of multiple copies is a byproduct of the
intermediate stages of the data flow program. Each operator in the
data flow program is written to read in an input set of data, perform
some processing on the data, and then write out an output set of data.
So, the problem of multiple copies is not really related to the data

flow program, but rather related to the data flow operators. Ideally,

if the data could be passed between operators in some serial fashion

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=500
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=1284&goto=1711#msg_1711
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=1711
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

(such as streams or sockets), intermediate copies of the data would
not be needed. Unfortunately, data flow operators often can not be
written to accept serial input and produce serial output, but rather
require the ability to access data non-sequentially (an N-dimensional
FFT is an example). These operators require the ability to randomly
access the data input and output. As you have pointed out, this
presents a significant problem when operating on large data sets.

Our approach to addressing this problem is to provide functionality
for automatically buffering streamed data so that it can be accessed
in a non-serial fashion. By addressing this problem in the
infrastructure, we can guarantee that only a minimal number of
temporary copies are present at any time (typically this is two copies
per data pathway).

There are probably some direct ways of "getting around” this problem.
Forcing everyone to write stream-processing routines is one approach.
However we don't see this as a reasonable solution since many
algorithms don't lend themselves to this type of interaction. Our

goal is to abstract low-level issues away from the users who will be
creating their own modules so that they can focus on the problem of
implementing their algorithms without having to worry about working
around limitations in their hardware and operating system. In the
context of large data sets and data flow environments such as Cantata,
the cost of doing this is increased overhead in terms of both

temporary storage and performance. The objective is to minimize these
costs while also minimizing the complexity of the system.

Hope we have been helpful.

Jeremy Worley, Steve Kubica, and the Khoros Group

Jeremy Worley jworley@khoros.unm.edu
The Khoros Group (505)837-6500

Jeremy Worley jworley@khoros.unm.edu
The Khoros Group (505)837-6500

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

