
Subject: Re: How to traverse/inquire a class object structure in IDL?
Posted by Paul van Delst on Wed, 13 Oct 1999 07:00:00 GMT
View Forum Message <> Reply to Message

First off, thanks to David and Pavel for their insights. Before I could check the
newsgroup for replies, one of our younger go-getter science types came and told me
something about object oriented programming that made good sense:

The data should be an attribute of the object, not the object itself.

Hmm. Anyway, he and I sat down for about 15 minutes and came up with the following
class structure definition and cleanup method:

PRO nasti__define

; -- Define the NAMED data structure attribute
 data = { data, $
 wavenumber : PTR_NEW(), $
 radiance : PTR_NEW(), $
 altitude : PTR_NEW(), $
 fov_angle : PTR_NEW(), $
 fov_index : PTR_NEW(), $
 latitude : PTR_NEW(), $
 longitude : PTR_NEW(), $
 aircraft_roll : PTR_NEW(), $
 aircraft_pitch : PTR_NEW(), $
 scan_line_index : PTR_NEW(), $
 date : PTR_NEW(), $
 time : PTR_NEW(), $
 decimal_time : PTR_NEW() }

; -- Create object CLASS structure
 nasti = { nasti, $
 data : data }

END

I like this becuase now I can add additional attributes whenever I want, e.g.
global attribute data read from the netCDF data file containing instrument
calibration information and/or processing software CVS/RCS info etc.

The cleanup method is now:

PRO nasti::cleanup

 PRINT, FORMAT = '(/5x, "Clean up...")'

; -- Free up pointers

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1954
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10516&goto=17388#msg_17388
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=17388
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 n_data_fields = N_TAGS(self.data)
 FOR i = 0, n_data_fields - 1 DO $
 IF (PTR_VALID(self.data.(i))) THEN $
 PTR_FREE, self.data.(i)

END

I just couldn't bring myself to typing PTR_FREE, self.whatever a bunch of times
because if I ever change the data structure definition, I would have to change the
cleanup as well. I like changes in my code to have as small a footprint as
possible, i.e. change is required in as few places as possible. Dunno if that's a
great idea but for my simple little example but it's a start. Right?

I wish I'd "discovered" objects earlier......all that code I wrote that *needs* the
data to be encapsulated. Crikey.

Thanks again!

paulv

--
Paul van Delst
Space Science and Engineering Center | Ph/Fax: (608) 265-5357, 262-5974
University of Wisconsin-Madison | Email: paul.vandelst@ssec.wisc.edu
1225 W. Dayton St., Madison WI 53706 | Web: http://airs2.ssec.wisc.edu/~paulv

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

