Subject: Re: determining if a point is "inside" or "outside" a shape Posted by Job von Rango on Thu, 21 Oct 1999 07:00:00 GMT

View Forum Message <> Reply to Message

Ther is another analytic way to solve the problem:

How to determine wether a point lies inside an arbitrary 2-dimensional polygon

or not?

IDEA:

Look at the sum of all angles tended between all pairs of neighboured vertics

the polygon and the given point.

IN DETAIL:

Assume we have the n vertices of polgons ordered at the positions:

The given point is denoted by p.

Now connect the given point p with all n neighboured vertices, and get the n vectors beginning in p and ending in the vertices:

Now add all n angles tended between the 2 vectors vec i and vec (i+1):

and calculate the sum:

(Use vec 1 again for vec (n+1) in the last angle n)

RESULT:

IMPORTANT:

Take into account the correct sign of the angles

and use the vertices in ascending order! Use e.g. the vector crossproduct:

in order to retrieve the absolut value |...| for the angle:

The valid sign for angle_i is given by looking at the scalar product of the crossproduct from above and a fixed vector vec_perp, perpendicular to the area of the polygon:

Now we get the correct value for all angles:

REMARK:

Examine the case of a given point inside the polygon, but very near to the edge between two vertices v_i and v_(i+1). The contributing angle will be:

(where epsilon denotes a small positive angle.) If we shift p over the edge to the outside of the polygon (but very near again to the edge) the contributing angle will be:

The switch of the sign is the reason for the discontinuity (2*pi <-> 0)of anglesum for points moving from inside to the outside of the polygon!

Job v. Rango Medizinische Klinik I Dipl.-Phys. D-52074 Aachen

Pauwelsstrasse 30

Tel.: 049 / (0)241 / 80-89832

Fax: 049 / (0)241 / 88-88414 Email: jran@pcserver.mk1.rwth-aachen.de

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive