
Subject: Re: Can this be vectorized?
Posted by Gautam Sethi on Wed, 03 Nov 1999 08:00:00 GMT
View Forum Message <> Reply to Message

here is another loop version. it is considerably smaller than dick's and your
pseudo-code.

 -- ------
function Y = davis(I,X)

LI = length(I); UI = unique(I); LUI = length(UI); Y = zeros(LI,LUI);
for i = 1:LUI
 Y(find(I/i == 1),i) = 1;
end

Y = X*Y;
 -- -----

: "John E. Davis" wrote:
:>
:> I am looking for either a matlab or IDL solution to this problem.
:> Suppose that I have two 1-d arrays, `I' and `X', where `I' is an integer
:> array and `X' is a floating point array. `I' is assumed to be sorted in
:> ascending order. I would like to produce a third array `Y' that is
:> formed from the elements of `X' as follows (pseudocode):
:>
:> len = length (X); #number of elements of X
:>
:> i = 0;
:> j = 0;
:>
:> while (i < len)
:> {
:> last_I = I[i];
:> sum = X[i];
:> i = i + 1;
:> while ((i < len)
:> AND (I[i] == last_I))
:> {
:> sum = sum + X[i];
:> i = i + 1;
:> }
:> Y[j] = sum;
:> j = j + 1;
:> }
:>
:> For example, suppose
:>

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3281
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10552&goto=17675#msg_17675
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=17675
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

:> I = [1 2 3 3 4 4 4 5]
:> X = [a b c d e f g h]
:>
:> Then, Y would be 5 element array:
:>
:> Y = [a b (c+d) (e+f+g) h]
:>
:> One partially vectorized pseudocode solution would be:
:>
:> jj = 0
:> for (i = min(I) to max(I))
:> {
:> J = WHERE (I == i);
:> Y[jj] = sum_elements (X[J])
:> jj = jj + 1
:> }
:>
:> What is the best way to vectorize this? In reality, X consists of
:> about one million elements, so I would prefer a solution that is
:> memory efficient. I apologize for posting to both newsgroups, but I
:> am looking for a solution in either language.
:>
:> Thanks,
:> --John

: John - I have an IDL solution that is not completely vectorize but which
: at least does vectorize filling the cases in which there is only one
: contributor to the sum. I have not tried it out extensively but I'd be
: interested in knowing if it saves you any time on your million-point
: runs:

: i=[0,1,1,2,3,4,4,4,5]
: x=[-3,5,2.5,7.,12.,-4.,10.,2.3,7]
: ; find indices in I array for which neighbors differ
: ; do this for upper and lower end
: ishift=shift(i,1)
: jshift=shift(i,-1)
: li=where(i ne ishift,nli)
: lj=where(i ne jshift)

: result=fltarr(nli) ; save storage for final answer

: ; fill elements that have only one contributor

: ll=where(li eq lj,nll)
: if nll gt 0 then result(ll)=x[li[ll]]

: ; sum up elements where there are more than one

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

: lm=where(li ne lj,nlm)
: if nlm gt 0 then $
: 	for n=0,nlm-1 do begin
: 		k=lm[n]
: 		result[k]=total(x[li[k]:lj[k]])
: 	endfor

: ; print the results

: print,i
: print,x
: print,result
: end

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

