Subject: Re: Can this be vectorized?
Posted by Gautam Sethi on Wed, 03 Nov 1999 08:00:00 GMT

View Forum Message <> Reply to Message

here is another loop version. it is considerably smaller than dick's and your
pseudo-code.

function Y = davis(l,X)

LI = length(l); Ul = unique(l); LUI = length(UIl); Y = zeros(LI,LUI);
fori=1:LUI

Y(find(I/i == 1),i) = 1,
end

: "John E. Davis" wrote:

>

:> | am looking for either a matlab or IDL solution to this problem.

:> Suppose that | have two 1-d arrays, 'I'and "X', where "I' is an integer
:> array and X' is a floating point array. I'is assumed to be sorted in
:> ascending order. | would like to produce a third array "Y' that is

:> formed from the elements of "X' as follows (pseudocode):

>

len = length (X); #number of elements of X

i=0;
j=0;
while (i < len)
{
last_I = 1I[i];
sum = X[il;

i=i+1
while ((i < len)
AND (I[i] == last_l))
{

sum = sum + X[iJ;
i=i+1;
}
Y[j] = sum;
j=i+1
}

For example, suppose

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3281
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10552&goto=17675#msg_17675
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=17675
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> |1=[12334445]
> X=[abcdefgh]

>
> Then, Y would be 5 element array:
>

> Y =[ab (c+d) (e+f+g) h]

>

> One partially vectorized pseudocode solution would be:
>

> jj=0

> for (i = min(l) to max(l))

> |

> J = WHERE (I ==);

> Y[jj] = sum_elements (X[J])
> j=i+1

>}

>

> What is the best way to vectorize this? In reality, X consists of

:> about one million elements, so | would prefer a solution that is

:> memory efficient. | apologize for posting to both newsgroups, but |
:> am looking for a solution in either language.

>

> Thanks,

> --John

: John - | have an IDL solution that is not completely vectorize but which
: at least does vectorize filling the cases in which there is only one

: contributor to the sum. | have not tried it out extensively but I'd be

. interested in knowing if it saves you any time on your million-point

: runs:

:i=[0,1,1,2,3,4,4,4,5]

: x=[-3,5,2.5,7.,12.,-4.,10.,2.3,7]

. ; find indices in | array for which neighbors differ
. ; do this for upper and lower end

- ishift=shift(i,1)

: jshift=shift(i,-1)

. li=where(i ne ishift,nli)

. li=where(i ne jshift)

: result=fltarr(nli) ; save storage for final answer
. ; fill elements that have only one contributor

> ll=where(li eq lj,nll)
2 if nll gt O then result(I)=x[li[ll]]

. ; sum up elements where there are more than one

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

. Im=where(li ne lj,nim)
;if nim gt 0 then $
. for n=0,nIm-1 do begin
k=Im[n]
result[k]=total (X[li[K]:lj[K]])
. endfor

. ; print the results

: print,i

: print,x

. print,result
:end

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

