Subject: Bug in WAVE/WAVE Advantage Routine SUM Posted by black on Tue, 01 Feb 1994 18:05:58 GMT

View Forum Message <> Reply to Message

We've just got WAVE v4.20 & WAVE Advantage v1.0 & I've spotted the VNI people have still not fixed a bug in the routine SUM. (The bug might exist in IDL as well).

ROUTINE: SUM

BUG: Partial failure for large output arrays, whose total numbe of elements exceeds 32767 (\$2^{15} -1 \$) [excuse the \TeX notation]

CAUSE: USE OF INTEGERS (THESE ONLY HAVE 16 BITS!!!) & FIX FUNCTION

EXAMPLE: type in the following to a PV~WAVE session

A = LINGEN(2,50,1000)

B = SUM(A,0)

PRINT, B(*,999)

this produces zero's, when it shouldn't. If B is probed further the zero's begin on the 32,768th element, considering the array as a one dimensional one

I've E-mailed VNI, so they know about it

Here's some patched code, which I've called MY_SUM

===========

FUNCTION MY_SUM,ARRAY,DIMENSION

\$Id: my_sum.pro, v1.0 91/09/04 15:38:00 wave Exp \$

: NAME:

SUM

PURPOSE:

Total up an array over one of its dimensions.

HISTORY

MODIFIED from SUM 91/09/04 by John Black

This is a bug fix of the supplied routine SUM, which fails in some circumstances due to 16 bit arithmatic relating to array indices. The main bug I suspect of the origonal routine is the line

XK = FIX(XIK/NI)

here I've replaced the 'FIX' by a 'LONG'. I've also made alot of the numbers involved in the for loops long as well for extra safety, but these might not be needed.

```
IF (N_PARAMS() LT 2) THEN BEGIN
PRINT, '*** Function SUM must be called with two parameters:'
                  ARRAY, DIMENSION'
PRINT,'
RETURN, ARRAY
ENDIF
S = SIZE(ARRAY)
N_DIM = S(0)
IF N DIM EQ 0 THEN BEGIN
PRINT, '*** Variable must be an array, name= ARRAY, routine SUM.'
RETURN, ARRAY
END ELSE IF (DIMENSION GE N_DIM) OR (DIMENSION LT 0) THEN BEGIN
PRINT, '*** Dimension out of range, name= ARRAY, routine SUM.'
RETURN, ARRAY
END ELSE IF N_DIM EQ 1 THEN BEGIN; Trivial case, equivalent to TOTAL.
F = TOTAL(ARRAY)
RETURN,F
ENDIF
S2 = S(1+WHERE(INDGEN(N_DIM) NE FIX(DIMENSION))); Set up array for output variable.
F = MAKE ARRAY(DIMENSION=S2, TYPE=S(S(0)+1))
 Calculate product of sizes of dimensions lower than, equal to, and higher
 than DIMENSION (NI,NJ,NK respectively).
NI = 1L: Make sure that NI is a long integer and result from using it is too
IF DIMENSION GT 0 THEN FOR M = 1, DIMENSION DO NI = NI * S(M)
NJ = S(DIMENSION+1)
NK = 1L : Make sure that NK is a long integer and result from it is too
IF DIMENSION LT N DIM-1 THEN FOR M = DIMENSION+2,N DIM DO NK = NK * S(M)
 Set up index arrays.
XIK = LINDGEN(NI*NK)
XJ = LINDGEN(NJ)
NIJ = NI*NJ
 Choose whether it is more efficient to loop over NI and NK ...
IF NI*NK LT NJ THEN BEGIN
FOR I = 0L, NI-1 DO FOR K = 0L, NK-1 DO $
 F(I+NI*K) = TOTAL(ARRAY(I + NI*XJ + NIJ*K))
 ... or over NJ.
END ELSE BEGIN
XI = XIK MOD NI
XK = LONG(XIK / NI); replaces XK = FIX(XIK / NI)
```

FOR J = 0L,NJ-1 DO F = F + ARRAY(XI + NI*J + NIJ*XK)**ENDELSE** RETURN,F **END**