Subject: Re: Inheritance query
Posted by J.D. Smith on Mon, 15 Nov 1999 08:00:00 GMT

View Forum Message <> Reply to Message

Martin Schultz wrote:

>

> |n article <3829BEB9.A3D2D3A6@astro.cornell.edu>,
> "J.D. Smith" <jdsmith@astro.cornell.edu> writes:
>>

>> One more tip: make good use of the _REF_EXTRA mechanism for chaining up to
>> methods which should return something:

>>

>> pro SubClass::GetProperty, VALUE=val,_ REF_EXTRA=e
>> val=self.value

>> SuperClass::GetProperty, EXTRA=e

>> end

>>

>> This allows the SuperClass's GetProperty Method to put things into variables for
>> return (like properties of the SuperClass, which aren't always just data
>> member!), impossible with the EXTRA mechanism.

>> JD

Thanks JD for bringing this up! | am just experimenting a little bit

with objects myself, and came across this _REF_EXTRA in -- | think it was
Struan's -- code. What | don't understand is: why do you use
_REF_EXTRA in the procedure header but then pass it on to SuperClass
via _EXTRA? | tried to follow the online help on this but couldn't really

find an answer. Is it simply syntax convention that one *always* uses
_EXTRA when calling the routine that accepts EXTRA or REF_EXTRA
keywords? Or is there more to it?

VVVVYVYVYVYVYV

Martin,

When | began asking RSI for a by-reference keyword mechanism, | fully expected

it to be invisible... i.e. to occur using the existing EXTRA mechanism. In a

series of discussions with the RSI programmer who wrote REF_EXTRA last year, |
gained an understanding of why REF_EXTRA is the way it is. You can search on
"IDL v5.1 impressions" for the full thread. The basic synopsis and a few things

I've learned by experience:

* REF_EXTRA was needed to preserve backwards compatibility with older code
which often uses explicitly the fact that the "extra" variable was a structure

with a certain format in the intermediate routine. People were commonly making
their own "extra" structs, or modifying them in transit. It could be argued

that this is outside the scope of what EXTRA was intended to address.

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10621&goto=17851#msg_17851
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=17851
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

* REF_EXTRA need only be used in the definition of the routine for which
by-reference inherited keywords are wanted. l.e. if a routine wants to pass a
value back to its caller through an unspecified keyword whose value will be
obtained from another routine called there, it must be defined with REF_EXTRA.
Example:

pro r3, R3_VAL=¢g
g=81
end

pror2, R2_VAL=g, REF_EXTRA=re
g=42

r3, EXTRA=re

end

prorl, R1 VAL=g, REF_EXTRA=re
g=8

r2, EXTRA=re

end

rl, R1_VAL=v1,R2_VAL=v2,R3_VAL=v3

Here we wanted to put a value in v1,v2,and v3, from routines called at various
depths down in the calling heirarchy. See below for an explanation of the
various uses of _REF_EXTRA and _EXTRA.

*For any routine *calling* syntax, the plain old _EXTRA can and should be used,

and IDL will automatically *know* whether you're using the new or the old

method. This is confusing, but saves having to go through all old code and

update _EXTRA->_REF_EXTRA in the calling sequences. RSI could have required all
_REF_EXTRA's to be used in definitions and calling sequences symmetrically, but
they spared us that agony (though not the resultant confusion).

* Having said that, if you are never "peeking behind the curtain” in your

inherited keyword routines -- are never modifying or changing or creating from
scratch the standard extra structure, but just simply passing them through to

one or more subsidiary routines -- you can simply use _REF_EXTRA in routine
definitions always. It's much faster than _EXTRA, and has the nice properties

of by reference that it should have had in the first place, using exactly the

same rules as arguments and normal keywords do. | think of REF_EXTRA as the
way _EXTRA should have been done in the first place.

* Inside the routine with a definition including _REF_EXTRA=re, the variable re
is a string array with the names of the extra keywords passed. The *values* are
nowhere to be found... they are invisible, and only accessible by those routines
called from this routine with _EXTRA=re.

* Never *call* a routine with _REF_EXTRA. It will compile and run, but it

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

probably won't do what you want (it greedily "eats" all keywords it can and
doesn't let the called routine see any). This is a shame, since we can't really
tell people to abandon the _EXTRA keyword altogether. At least it's shorter to

type.

Anyway, hope this was clear. It's really more complicated than it could have
been, but sometimes you've just got to make do.

JD

J.D. Smith [*| WORK: (607) 255-5842
Cornell University Dept. of Astronomy |*| (607) 255-6263
304 Space Sciences Bldg. [*| FAX: (607) 255-5875
Ithaca, NY 14853 [*|

Page 3 of 3 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

