Subject: Re: Copying objects
Posted by J.D. Smith on Thu, 02 Dec 1999 08:00:00 GMT

View Forum Message <> Reply to Message

James Tappin wrote:

Is there a "clean" way to make a copy of an object. The best | could do for a
nice easy case with no pointers or object references in the class was:

pro Objectl::set_all, tstr
fori =0, n_tags(tstr)-1 do self.(i) = tstr.(i)
end

function Objectl::copy

temp = {object1}

fori =0, n_tags(temp)-1 do temp.(i) = self.(i)
newobj = obj_new('objectl’)

newobj -> set_all, temp

return, newobj

end

While it works, it seems to be a bit of a kludge. Is there a better way?

VVVVVVVVVVVVVYVYVYVYVYV

The easiest way to copy objects in bulk, composited objects and all, is to save
and restore, using:

save,obj,FILENAME=savefile
restore,savefile, RESTORED_OBJECTS=newobj,/RELAXED_STRUCTURE_ ASSIGNMENT
newobj=newobj[0]

Don't forget that the object reference variable is also restored, and will
overwrite a variable with the same name in that level (but this can be used to
advantage -- see below). Also beware of later restoring objects, since their
methods (and those of their superclasses) will be unavailable, and will not be
located automatically. You can prevent this... see a posting from last year on
restoring objects (I can re-post my resolve_obj if necessary).

Other interesting applications of this method:

Objects which replace themselves from file. Don't forget to kill the replaced
object:

oldself=self

; Be sure to do some error-catching in here!

restore,file,, RELAXED_STRUCTURE_ASSIGNMENT ;self is overwritten from file!
;; Do some error catching, but if it worked...

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10788&goto=18154#msg_18154
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=18154
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

obj_destroy,oldself

and viola! a new self-identity! Instant "Revert from disk" command. | use it
all the time.

Another fun and useful technique: "disconnect" irrelevant portions of objects
before saving them, especially those which will implicitly define structures and
classes that might be changing alot, and which you don't want to keep up with
the method resolution issue. Simply use pointers, and do something like:

uselesssav=self.UselessStructPtr
self.UselessStructPtr=ptr_new() ; save a null pointer instead!
self->Save

self.UselessStructPtr=uselesssav

etc. You get the idea. Be sure to disconnect only those things for which a
null-pointer value isn't disasterous!

Good Luck,

JD

J.D. Smith *I WORK: (607) 255-5842
Cornell University Dept. of Astronomy |*| (607) 255-6263
304 Space Sciences Bldg. [*| FAX: (607) 255-5875
Ithaca, NY 14853 1*|

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

