
Subject: Re: REPLICATE with arrays
Posted by Craig Markwardt on Fri, 11 Feb 2000 08:00:00 GMT
View Forum Message <> Reply to Message

davidf@dfanning.com (David Fanning) writes:
> Vince Hradil (hradilv@yahoo.com) writes:
>
>> I often have the need to replicate an array, but IDL's replicate only
>> works with scalars. Does anyone have any tips on the most efficient,
>> simplest, clearest (you choose) way to do this?
>
> I am such a sucker for these kinds of articles. :-(
> ...

I'll add my implementation to the competition. Here is CMREPLICATE
which takes either a scalar or array. It uses the REFORM/REBIN magic
that has already been discussed, for numeric types. For other types I
did have to revert to MAKE_ARRAY/copy technique, but I've sped up the
copy vs a simple for loop. Obfuscatory I am sure!

It's also available at my web page (and if you are a regular check the
NEWS too, since I've made a few other updates):

http://cow.physics.wisc.edu/~craigm/idl/idl.html

Craig

;+
; NAME:
; CMREPLICATE
;
; AUTHOR:
; Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
; craigm@lheamail.gsfc.nasa.gov
;
; PURPOSE:
; Replicates an array or scalar into a larger array, as REPLICATE does.
;
; CALLING SEQUENCE:
; ARRAY = CMREPLICATE(VALUE, DIMS)
;
; DESCRIPTION:
;
; The CMREPLICATE function constructs an array, which is filled with
; the specified VALUE template. CMREPLICATE is very similar to the
; built-in IDL function REPLICATE. However there are two
; differences:
;

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11183&goto=18884#msg_18884
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=18884
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; * the VALUE can be either scalar or an ARRAY.
;
; * the dimensions are specified as a single vector rather than
; individual function arguments.
;
; For example, if VALUE is a 2x2 array, and DIMS is [3,4], then the
; resulting array will be 2x2x3x4.
;
; INPUTS:
;
; VALUE - a scalar or array template of any time, to be replicated.
; NOTE: These two calls do not produce the same result:
; ARRAY = REPLICATE(1, DIMS)
; ARRAY = REPLICATE([1], DIMS)
; In the first case the output dimensions will be DIMS and
; in the second case the output dimensions will be 1xDIMS
; (except for structures). That is, a vector of length 1 is
; considered to be different from a scalar.
;
; DIMS - Dimensions of output array (which are combined with the
; dimensions of the input VALUE template). If DIMS is not
; specified then VALUE is returned unchanged.
;
; RETURNS:
; The resulting replicated array.
;
; EXAMPLE:
; x = [0,1,2]
; help, cmreplicate(x, [2,2])
; <Expression> INT = Array[3, 2, 2]
; Explanation: The 3-vector x is replicated 2x2 times.
;
; x = 5L
; help, cmreplicate(x, [2,2])
; <Expression> LONG = Array[2, 2]
; Explanation: The scalar x is replicated 2x2 times.
;
; SEE ALSO:
;
; REPLICATE
;
; MODIFICATION HISTORY:
; Written, CM, 11 Feb 2000
;
;-
; Copyright (C) 2000, Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-
function cmreplicate, array, dims

 if n_params() EQ 0 then begin
 message, 'RARRAY = CMREPLICATE(ARRAY, DIMS)', /info
 return, 0L
 endif

 if n_elements(dims) EQ 0 then return, array
 if n_elements(array) EQ 0 then $
 message, 'ERROR: ARRAY must have at least one element'

 ;; Construct new dimensions, being careful about scalars
 sz = size(array)
 type = sz(sz(0)+1)
 if sz(0) EQ 0 then return, make_array(value=array, dimension=dims)
 onedims = [sz(1:sz(0)), dims*0+1] ;; For REFORM, to extend # of dims.
 newdims = [sz(1:sz(0)), dims] ;; For REBIN, to enlarge # of dims.
 nnewdims = n_elements(newdims)

 if nnewdims GT 8 then $
 message, 'ERROR: resulting array would have too many dimensions.'

 if type NE 7 AND type NE 8 AND type NE 10 AND type NE 11 then begin
 ;; Handle numeric types

 ;; Argghh! Why doesn't REBIN take an *array* of dimensions!
 ;; *Instead* we need to run EXECUTE(), with a string like this:
 ;; rebin(array1, newdims(0), newdims(1), ...)
 ;; That's what the following format string does.
 fmt = '('+strtrim(nnewdims,2)+'("newdims(",I0,")",:,","))'
 arglist = string(lindgen(nnewdims), format=fmt)
 cmd = 'return, rebin(reform([array], onedims),'+arglist+')'
 dummy = execute(cmd)

 ;; If execution reaches here then an error occurred.
 message, 'ERROR: array could not be resized'
 return, 0L

 endif else begin
 ;; Handle strings, structures, pointers, and objects separately

 ;; Handle structures, which are never scalars
 if type EQ 8 AND sz(0) EQ 1 AND n_elements(array) EQ 1 then $
 return, make_array(value=array, dimension=dims)

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 nold = n_elements(array)
 nadd = 1L
 for i = 0L, n_elements(dims)-1 do nadd = nadd * long(dims(i))
 array1 = make_array(type=sz(sz(0)+1), dimension=[nold,nadd])
 array2 = reform([array], n_elements(array))

 ;; Efficient copying, done by powers of two
 array1(0,0) = array2
 stride = 1L ;; stride increase by a factor of two in each iteration
 i = 1L & nleft = nadd - 1
 while nleft GT stride do begin
 array1(0,i) = array1(*,0:stride-1) ;; Note sneaky IDL optimization
 i = i + stride & nleft = nleft - stride
 stride = stride * 2
 endwhile
 if nleft GT 0 then array1(0,i) = array1(*,0:nleft-1)

 return, reform(array1, newdims, /overwrite)
 endelse

end

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

