
Subject: Re: Passing optional parameters through a wrapper routine
Posted by John-David T. Smith on Fri, 11 Feb 2000 08:00:00 GMT
View Forum Message <> Reply to Message

William Thompson wrote:
>
> edward.s.meinel@aero.org writes:
>
>> In article <950129121.690143@clam-55>,
>> "Mark Hadfield" <m.hadfield@niwa.cri.nz> wrote:
>
>>> That's an interesting point David. The first few lines
>>> of my routines tend to look something like this:
>>>
>>> if n_elements(arg1) then message, 'You haven't defined arg1'
>
>> ...
>
>>> 2. The principle that in scientific programming
>>> (as opposed, say, to Web page programming)
>>> it is much better for programs to crash than to continue
>>> and return bad data.
>
>> Ugh, I *hate* MESSAGE. Why cause a crash when it is easy to exit nicely?
>> How about:
>
>> IF N_ELEMENTS(arg1) EQ 0 THEN BEGIN
>> print, 'You haven't defined arg1'
>> RETURN
>> ENDIF
>
>> or even:
>
>> IF N_ELEMENTS(arg1) EQ 0 THEN BEGIN
>> dummy = DIALOG_MESSAGE('You haven't defined arg1')
>> RETURN
>> ENDIF
>
>> This way the user gets the message, but the program doesn't crash. This
>> is especially helpful when the procedure is used in a widget -- I don't
>> have to manually clean up everything before trying again.
>
>>> if size(arg2, /TNAME) ne 'STRING' then message, 'Arg2 must be string
>>> specifying the file name'
>
>> ...
>
>>> if in doubt, stop and call for help.

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11161&goto=18892#msg_18892
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=18892
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>> Right, but you can stop and ask for help without forcing a crash. How
>> about:
>
>> IF SIZE(arg2, /TNAME) NE 'STRING' THEN BEGIN
>
>> ; Oooops! forgot the file name.
>
>> arg2 = DIALOG_PICKFILE(set_the_appropriate_keywords)
>> IF arg2 EQ '' THEN BEGIN
>> dummy = DIALOG_MESSAGE($
>> 'You must provide a file name as the second argument')
>> RETURN
>> ENDIF
>> ENDIF
>
> I tend to agree with Mark Hadfield that it's better to crash than to not catch
> the error and let the program continue on. If one is operating in a
> user-driven environment, then bringing it to the user's attention, such as
> popping up an error widget as described above, is a good way to handle it.
> However, one must also think about the case where data analysis software is
> allowed to run in batch mode.
>
> One trick I've adopted in many of my programs is to use an error message
> keyword, called ERRMSG. Then, instead of using something like
>
> MESSAGE, 'You haven't defined arg1'
>
> I substitute
>
> MESSAGE = 'You haven't defined arg1'
> GOTO, HANDLE_ERROR
>
> At the end of the program, I have lines like
>
> GOTO, FINISH
> ;
> ; Error handling point.
> ;
> HANDLE_ERROR:
> IF N_ELEMENTS(ERRMSG) NE 0 THEN $
> ERRMSG = 'My_Routine: ' + MESSAGE ELSE $
> MESSAGE, MESSAGE
> ;
> ; Exit point.
> ;
> FINISH:
> RETURN

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> END
>
> That way, if the calling routine calls "My_Routine" without passing the ERRMSG
> keyword, then messages are handled with the MESSAGE facility. However, if
> ERRMSG is passed, then the error message is passed back to the calling routine
> and it's then responsible for deciding what to do about it. The only drawback
> to this scheme is that one has to define ERRMSG first, so that "My_Routine"
> knows that it was passed, e.g
>
> ERRMSG = ''
> My_Routine, ERRMSG=ERRMSG, ...
> IF ERRMSG NE '' THEN ...

That's why arg_present() was invented! It can detect undefined but nevertheless
passed-in parameters, available by reference from the calling level. No need to
define them beforehand. It also saves you from the silly user who does:

IDL> my_routine,ERROR_MESSAGE='This is a fine message'

You would change your code to:

IF arg_present(ERRMSG) THEN $
ERRMSG = 'My_Routine: ' + MESSAGE ELSE $
MESSAGE, MESSAGE

Another side-benefit of arg_present() is that you can use it to annoy David
Fanning by forcing him to contradict bold statements such as "it is NOT possible
to reliably determine if a keyword was used in a call to your program", when in
fact the test:

n_elements(k) ne 0 OR arg_present(k)

will tell you precisely this ;). This might be useful if k is a flag, which
you'd like to set if anything, even an undefined variable, is passed it.

JD

--
 J.D. Smith |*| WORK: (607) 255-5842
 Cornell University Dept. of Astronomy |*| (607) 255-6263
 304 Space Sciences Bldg. |*| FAX: (607) 255-5875
 Ithaca, NY 14853 |*|

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

