
Subject: Re: Passing optional parameters through a wrapper routine
Posted by thompson on Thu, 10 Feb 2000 08:00:00 GMT
View Forum Message <> Reply to Message

edward.s.meinel@aero.org writes:

> In article <950129121.690143@clam-55>,
> "Mark Hadfield" <m.hadfield@niwa.cri.nz> wrote:

>> That's an interesting point David. The first few lines
>> of my routines tend to look something like this:
>>
>> if n_elements(arg1) then message, 'You haven't defined arg1'

> ...

>> 2. The principle that in scientific programming
>> (as opposed, say, to Web page programming)
>> it is much better for programs to crash than to continue
>> and return bad data.

> Ugh, I *hate* MESSAGE. Why cause a crash when it is easy to exit nicely?
> How about:

> IF N_ELEMENTS(arg1) EQ 0 THEN BEGIN
> print, 'You haven't defined arg1'
> RETURN
> ENDIF

> or even:

> IF N_ELEMENTS(arg1) EQ 0 THEN BEGIN
> dummy = DIALOG_MESSAGE('You haven't defined arg1')
> RETURN
> ENDIF

> This way the user gets the message, but the program doesn't crash. This
> is especially helpful when the procedure is used in a widget -- I don't
> have to manually clean up everything before trying again.

>> if size(arg2, /TNAME) ne 'STRING' then message, 'Arg2 must be string
>> specifying the file name'

> ...

>> if in doubt, stop and call for help.

> Right, but you can stop and ask for help without forcing a crash. How

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=35
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11161&goto=18910#msg_18910
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=18910
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> about:

> IF SIZE(arg2, /TNAME) NE 'STRING' THEN BEGIN

> ; Oooops! forgot the file name.

> arg2 = DIALOG_PICKFILE(set_the_appropriate_keywords)
> IF arg2 EQ '' THEN BEGIN
> dummy = DIALOG_MESSAGE($
> 'You must provide a file name as the second argument')
> RETURN
> ENDIF
> ENDIF

I tend to agree with Mark Hadfield that it's better to crash than to not catch
the error and let the program continue on. If one is operating in a
user-driven environment, then bringing it to the user's attention, such as
popping up an error widget as described above, is a good way to handle it.
However, one must also think about the case where data analysis software is
allowed to run in batch mode.

One trick I've adopted in many of my programs is to use an error message
keyword, called ERRMSG. Then, instead of using something like

	MESSAGE, 'You haven't defined arg1'

I substitute

	MESSAGE = 'You haven't defined arg1'
	GOTO, HANDLE_ERROR

At the end of the program, I have lines like

		GOTO, FINISH
	;
	; Error handling point.
	;
	HANDLE_ERROR:
		IF N_ELEMENTS(ERRMSG) NE 0 THEN			$
			ERRMSG = 'My_Routine: ' + MESSAGE ELSE	$
			MESSAGE, MESSAGE
	;
	; Exit point.
	;
	FINISH:

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

		RETURN
		END

That way, if the calling routine calls "My_Routine" without passing the ERRMSG
keyword, then messages are handled with the MESSAGE facility. However, if
ERRMSG is passed, then the error message is passed back to the calling routine
and it's then responsible for deciding what to do about it. The only drawback
to this scheme is that one has to define ERRMSG first, so that "My_Routine"
knows that it was passed, e.g

	ERRMSG = ''
	My_Routine, ERRMSG=ERRMSG, ...
	IF ERRMSG NE '' THEN ...

William Thompson

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

