Subject: Re: complex arithmetic Posted by thompson on Wed, 06 Apr 1994 14:23:13 GMT

View Forum Message <> Reply to Message

stl@sma.ch (Stephen Strebel) writes:

```
> In article <1994Apr5.123735.8305@news.uit.no> royd@zapffe.mat-stat.uit.no (Roy Einar
Dragseth) writes:
>> Why isn't this supported:
\rightarrow IDL> x = complex(0.,1.)
>> IDL> print, x^{1./3}
>> % Operation illegal with complex type.
>> % Execution halted at $MAIN$ .
>>
>> We are running IDL. Version 3.5.1 (hp-ux hp_pa) on a HP9000/755.
> Hi,
> neat little problem! I just tested this on my Sparc 10 running Solaris
> 4.1 with IDL version 3.5.1 and the problem seems even worse then you
> stated. The following works:
> IDL > x = complex(0.,1.)
> IDL> print,x^{(3)}
> (
     -0.00000,
                 -1.00000
> but, as soon as you change the print to include a float things blow up:
> IDL> print, x^{(3.)}
> % Operation illegal with complex type.
> % Execution halted at $MAIN$ .
> does anyone understand this? SHould such an operation even be allowed?
I think the problem is that such problems are degenerate--there is more than
one correct answer. For example, if we define A and B to be
IDL> A = COMPLEX(1,1)
IDL> B = COMPLEX(-1,-1)
and C to be
and B to be
IDL> C = A^2
IDL> PRINT, C
    0.00000.
                 2.00000)
```

then A can be thought of as the square root of C. However, so can B, because A^2 and B^2 resolve to the same value. Thus, which is the correct answer for

C^(0.5)?

Evidently, IDL gets around this ambiguity by not allowing one to calculate a complex number to a non-integer power, even if the floating point number could be simplified to an integer such as in your example above.

Bill Thompson