Subject: SVDFIT bug?

Posted by justin_ashmall on Mon, 13 Mar 2000 08:00:00 GMT

View Forum Message <> Reply to Message

Greetings all,

I came across what looks like a bug in SVDFIT. I submitted it to RSI a week ago now but haven't heard back (except for a confirmation of receipt) and thought it might of interest to The Group. The bug appears to be in the errors given for the coefficients returned by SVDFIT. Below is the email I sent to RSI explaining the problem. I'm using IDL5.3 on an NT box.

Justin

I've used LINFIT to fit a straight line to some data, and done the same using SVDFIT (with M set to 2 for a linear fit). Whilst I get exactly the same coefficients returned from both routines, the standard deviations (errors) of the coefficients vary between routines. It looks to me that the SVDFIT errors are incorrect.

Strangely it seems that the errors of the coefficients from SVDFIT do not depend on the y values. I've included a short prog to demonstrate the problem. The results it produces are shown below:

IDL> lin_test
Fitting y = a + bx

Showing: a, b, a_err, b_err

Fitting (x, y1):

Fitting (x, y2)

 SVDFIT:
 0.15193113
 3.5026045
 0.42803180
 0.010803003

 LINFIT:
 0.15193113
 3.5026045
 0.58222837
 0.014694737

You can see that the last two numbers (the errors) vary between LINFIT and SVDFIT. Notice also that the error values from SVDFIT are the same with two different sets of y values (but the same x values).

From the documentation we see that the SIGMA keyword returns a "vector of standard deviations for the returned coefficients" with SVDFIT. With LINFIT the SIGMA keyword returns a "vector of probable uncertainties for the model parameters." Given this maybe we should not expect the values to be the same, however order of magnitude differences and the independece of

the y values suggest something is amiss. Also, since both routines appear to use code lifted or translated from Numerical Recipes, we might expect the same values back.

```
PRO lin_test
;Create some data
x =DOUBLE([85, 76, 24, 21, 8.6, 5.7, 1.6, 1.2, 0.6])
y1=DOUBLE([13, 11, 3.3, 3.0, 1.3, 0.8, 0.2, 0.1, 0.08])
y2=DOUBLE([296, 268, 84, 76, 30, 19, 5.6, 4.3, 2.0])
PRINT, "Fitting y = a + bx"
PRINT, "Showing: a, b, a_err, b_err"
PRINT
PRINT, "Fitting (x, y1):"
;Make linear fit using SVDFIT, setting M = 2
svd_vals1 = SVDFIT( x, y1, 2, /DOUBLE, SIGMA=svd_sig1)
PRINT, "SVDFIT:", svd_vals1[0], svd_vals1[1], svd_sig1[0], svd_sig1[1]
;Fit same data using LINFIT
lin_vals1 = LINFIT(x, y1, /DOUBLE, SIGMA=lin_sig1)
PRINT, "LINFIT:", lin_vals1[0], lin_vals1[1], lin_sig1[0], lin_sig1[1]
PRINT, "Fitting (x, y2)"
;SAme as above with y2 data
svd vals2 = SVDFIT(x, y2, 2, /DOUBLE, SIGMA=svd sig2)
PRINT, "SVDFIT:", svd_vals2[0], svd_vals2[1], svd_sig2[0], svd_sig2[1]
;Fit y2 data using LINFIT
lin_vals2 = LINFIT(x, y2, /DOUBLE, SIGMA=lin_sig2)
PRINT, "LINFIT:", lin_vals2[0], lin_vals2[1], lin_sig2[0], lin_sig2[1]
```

END