
Subject: Re: Object Data and pointer assignments
Posted by John-David T. Smith on Fri, 10 Mar 2000 08:00:00 GMT
View Forum Message <> Reply to Message

"J.D. Smith" wrote:
>
> David Fanning wrote:
>>
>> J.D. Smith (jdsmith@astro.cornell.edu) writes:
>>
>>> Just to be clear... you are free to free self.inarray, and point it somewhere
>>> else, at any time. This can be useful if you have a list which is either empty
>>> (NULL pointer a.k.a. a dangling reference), or not (pointer to a list of finite
>>> size). If the list changes size, and becomes empty again, you can simply free
>>> it, which indicates its emptiness. If it then grows again, simply use ptr_new()
>>> to get another heap variable for it. So, while it might be easiest in some
>>> cases only to call ptr_new() once, in other cases it is useful to let a single
>>> member variable like self.inarray point to different heap variables over its
>>> life.
>>
>> Lord knows I need more excitement in my life if I'm quibbling with
>> quibbles, but let me make one suggestion:
>>
>> If I want to point to an "empty" variable, I prefer to
>> use a pointer to an undefined variable. The advantage
>> to me is that this is a VALID pointer, in contrast
>> to the NULL pointer, which is an invalid pointer.
>>
>> Note:
>>
>> IDL> a = Ptr_New()
>> IDL> Print, Ptr_Valid(a)
>> 0
>> IDL> *a = 5
>> % Unable to dereference NULL pointer: A.
>>
>> IDL> b = Ptr_New(/Allocate_Heap)
>> IDL> Print, Ptr_Valid(b)
>> 1
>> IDL> *b = 5
>>
>> I like this because it fits into the programming style
>> I've developed. For example:
>>
>> IF N_Elements(color) EQ 0 THEN color = 5
>> IF N_Elements(*b) EQ 0 THEN *b = 5
>>
>> But again, you must *initialize* this pointer to an

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11350&goto=19301#msg_19301
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=19301
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> undefined variable in the INIT method, NOT in the __DEFINE
>> module.
>>
>
> That's a nice idea. I hadn't thought of doing it that way. In my method, the
> validity of the pointer is what indicates an empty vs. non-empty list. In your
> method, whether the variable pointed to by the pointer is defined provides the
> same distinction. With your method, you save yourself tests like:
>
> if ptr_valid(ptr) n_elem=0 else n_elem=n_elements(ptr)

meant:
	if ptr_valid(ptr) n_elem=0 else n_elem=n_elements(*ptr)

of course.

>
> (of which I have *many*) in favor of:
>
> n_elem=n_elements(*ptr)
>
> This is very clean. To pay for that, though, each time your list (or whatever)
> reaches 0 size, you must do a:
>
> ptr_free,ptr
> ptr=ptr_new(/ALLOC)
>
> the latter line not being required in my method (a consequence of the
> indistinguishability of null pointers and dangling pointers). I think this
> trade is well worth it, though, and I will consider using your method in the
> future.

One nice feature of my method is the ability to "zero" many lists or data
constructions quite simply. E.g. suppose I had a pointer "l" to a list of
pointers, each to a list, along with a few other lists. To zero out all of
those lists, I can simply say:

ptr_free,*l,l1,s.l2,...

whereas in your method, I'd have to say:

ptr_free,*l
for i=0,n_elements(l)-1 do *l[i]=ptr_new(/ALLOC)
l1=ptr_new(/ALLOC)
s.l2=ptr_new(/ALLOC)
...

which could introduce more room for errors. I'll let you know how I fare with

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

your technique.

JD

--
 J.D. Smith |*| WORK: (607) 255-5842
 Cornell University Dept. of Astronomy |*| (607) 255-6263
 304 Space Sciences Bldg. |*| FAX: (607) 255-5875
 Ithaca, NY 14853 |*|

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

