Subject: Re: Object Data and pointer assignments
Posted by John-David T. Smith on Thu, 09 Mar 2000 08:00:00 GMT

Vie

w Forum Message <> Reply to Message

David Fanning wrote:

>
>
>
>>
>>
>>
>>
>>

VVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

J.D. Smith (jdsmith@astro.cornell.edu) writes:

Just to be clear... you are free to free self.inarray, and point it somewhere
else, at any time. This can be useful if you have a list which is either empty
(NULL pointer a.k.a. a dangling reference), or not (pointer to a list of finite
size). If the list changes size, and becomes empty again, you can simply free
it, which indicates its emptiness. If it then grows again, simply use ptr_new()
to get another heap variable for it. So, while it might be easiest in some
cases only to call ptr_new() once, in other cases it is useful to let a single
member variable like self.inarray point to different heap variables over its

life.

Lord knows | need more excitement in my life if I'm quibbling with
quibbles, but let me make one suggestion:

If I want to point to an "empty" variable, | prefer to

use a pointer to an undefined variable. The advantage
to me is that this is a VALID pointer, in contrast

to the NULL pointer, which is an invalid pointer.

Note:

IDL> a = Ptr_New()
IDL> Print, Ptr_Valid(a)
0
IDL>*a =5
% Unable to dereference NULL pointer: A.

IDL> b = Ptr_New(/Allocate_Heap)
IDL> Print, Ptr_Valid(b)

1
IDL>*bh =5

| like this because it fits into the programming style
I've developed. For example:

IF N_Elements(color) EQ 0 THEN color =5
IF N_Elements(*b) EQ O THEN *b =5

But again, you must *initialize* this pointer to an
undefined variable in the INIT method, NOT in the _ DEFINE
module.

Pag

el of 2 ---- CGenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11350&goto=19310#msg_19310
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=19310
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

That's a nice idea. | hadn't thought of doing it that way. In my method, the
validity of the pointer is what indicates an empty vs. non-empty list. In your
method, whether the variable pointed to by the pointer is defined provides the
same distinction. With your method, you save yourself tests like:

if ptr_valid(ptr) n_elem=0 else n_elem=n_elements(ptr)
(of which I have *many*) in favor of:
n_elem=n_elements(*ptr)

This is very clean. To pay for that, though, each time your list (or whatever)
reaches 0 size, you must do a:

ptr_free,ptr
ptr=ptr_new(/ALLOC)

the latter line not being required in my method (a consequence of the
indistinguishability of null pointers and dangling pointers). | think this
trade is well worth it, though, and | will consider using your method in the
future.

Thanks for the tip!

JD

J.D. Smith [*| WORK: (607) 255-5842
Cornell University Dept. of Astronomy |*| (607) 255-6263
304 Space Sciences Bldg. [*| FAX: (607) 255-5875
Ithaca, NY 14853 [*|

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

