Subject: Re: Object Data and pointer assignments
Posted by davidf on Thu, 09 Mar 2000 08:00:00 GMT

View Forum Message <> Reply to Message

Ben Tupper (tupper@seadas.bigelow.org) writes:

| am in the middle of wrtting my first object from scratch. Scratch is

a good word since I'm doing a lot of that on my head. I'm hoping to get
some advice on organization of data. | need 4 pieces of data (one 2d
arrays and two structures that vary in size according to the size of the
arrays) plus six keywords that | need to get/set. Currently, | have
defined each of the 3 bits of data as null pointers in the BLAH__DEFINE
procedure.

argument. At that point | reassign one of the pointers to...
Self.InArray = Ptr_New(InArray).

>
>
>
>
>
>
>
>
> In the BLAH::INIT function, the user passes one of the two arrays as an
>
>
>
>
> | think | understand why | can reassign the structure field when going

> from a null pointer to a filled pointer. On second thought, | don't

> understand it but | can accept that it works. It's the next step | need

> help on.

The reason you need to use an actual pointer (Ptr_New) here,

is that you *don't* have a pointer from the BLAH__DEFINE

module. What you have done in that module is said that the

definition of the InArray field *will be* a pointer. In other

words, the BLAH__ DEFINE module only *defines* the object and

its fields, it doesn't assign anything to the self object. This

is what must be done by the INIT method.

| would like to change the contents of this field later to some other

value (a differently sized array.) Here's where the ice under me gets

very very thin and my eyes get misty. In the BLAH::SETPROPERTY method,
| don't know if | should free this pointer before reassigning (and does

that leave the structure field undefined?), or if | should simply

overwrite it as | did in the INIT function. If | reassign the filed

to a new pointer, what happens to the previously occupied heap space?
Have | sprung a leak?

VVVVYVYVYVYV

To reassign the pointer to something else (after it has been
defined by the INIT method), you simple de-reference the pointer:

*self.InArray = newStruct

You don't leak any memory because IDL is managing this
whole process for you. (Remember, these pointers are

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11350&goto=19318#msg_19318
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=19318
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

not real pointers in the C sense. They are really
glorified variables in the IDL sense.) This is the
bestest feature of IDL pointers. :-)

If you overwrite the pointer like this:

self.InArray = Ptr_New(newStruct)
you *will* leak memory because now you destroyed the
only reference to that pointer area of memory. You could

do this:

Ptr_Free, self.InArray
self.InArray = Ptr_New(newStruct)

But what is the point, if IDL can do it all for you?
Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting

Phone: 970-221-0438 E-Mail: davidf@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

