
Subject: Re: Object graphic 3d Scatterplot
Posted by Struan Gray on Thu, 23 Mar 2000 08:00:00 GMT
View Forum Message <> Reply to Message

I'm coming to this a bit late, but what the hell....

 I played with this a bit when making a suite of routines to draw
crystal structures using object graphics. My first approach was the
polyline one that David has presented here. The final version simply
creates a seperate graphics object for each data point.

 The polyline approach is faster, both to create the dataset and to
draw it on the screen. Using lots of different individual graphics
objects is more versatile and makes some sorts of data picking and
user interaction simpler.

 Both approaches can be speeded up by limiting the number of
symbols. In David's SCATTER_SURFACE each data point has its own
symbol. If you can live with the reduced generality, use the fact
that a palette for the colours limits the number of distinct symbols
to 256. If you re-jig things so that the SYMBOL keyword refers to a
256-entry object array things speed up rather dramatically for 3000
objects. This code *should* drop nicely into David's example if you
move the declaration of thisContainer above it:

 ; Create a color palette for coloring the symbols.

 thisPalette = Obj_New('IDLgrPalette')
 thisPalette->LoadCT, 5
 thisContainer->add, thisPalette

 ; Create the symbolarray

 npts = n_elements(z)
 nsymbols = min([256, npts])
 theseSymbols=ObjArr(nsymbols)
 FOR i=0,nsymbols-1 DO BEGIN
 if npts le nsymbols then colidx = zcolors[i] else colidx = i
 theseSymbols[i] = Obj_New('IDLgrSymbol', 4, $
 Color=colidx, Size=[0.05, 0.05, 0.05])
 ENDFOR
 if npts gt nsymbols then theseSymbols = theseSymbols[zcolors]
 thisContainer->add, theseSymbols

 ; Create Polyline object..

 thisPolyline = OBJ_NEW('IDLgrPolyline', x, y, z, $

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1284
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11422&goto=19462#msg_19462
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=19462
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 LineStyle=6, Symbol=theseSymbols, palette=thispalette)

 If you are creating seperate graphics objects you can do the same
thing by enclosing the plotted data point in an IDLgrModel and using
the /ALIAS keyword to add the symbol objects which you create
seperately. To illustrate this, and allow you to play with timings, I
have crudely hacked David's program to accept two new keywords and
placed it on my web server:

 http://www.sljus.lu.se/stm/IDL/misc/scatter_surface.txt

 The new keywords are NPTS (the number of data points you want) and
POLYTYPE. Polytype=1 (the default) gives you David's solution (though
I've fiddled with the colour specification a bit - if you have a
palette, why throw it away?). Polytype=2 give you a graphics element
for every data point. Polytype=3 minimises the number of graphics
elements in 2. Polytype=4 minimises the symbols in David's approach,
as above. 2 and 3 are slower than 1 and 4; 3 and 4 are faster than 1
and 2.

 Finally, if you only have a few classes of data, and need only a
few symbols, you can tidy up the programming by using a different
polyline for each class (optionally, with SHARE_DATA). If you are
joining up the symbols with lines, using the POLYLINES keyword to
specify multiple sub-polylines is also useful. Both of these tricks
make it easier to keep track of ownership of the data if you want to
change it iteractively.

David Fanning, davidf@dfanning.com writes:

> Andrej Gapelyuk (gapelyuk@fvk-berlin.de) writes:
>
> The only disadvantage which I can see that all symbols are
> flat and non symmetrical in 3d, I would be prefer small
> spheres.
>
> As a matter of fact, it should be possible to use *ANY*
> kind of symbol you like, including 3D symbols (e.g. little
> shaded spheres), since the "value" of the DATA keyword for
> the symbol object can in fact be another model object.

 This is true and works nicely. You can pass any IDLgrModel (or
simple graphics object) to the IDLgrSymbol's INIT procedure and it
will appear at each data point. Using a model lets you use stupidly
complex symbols and, more usefully, lets you adjust their colours and

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

other properties on the fly.

Struan

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

